Skip to main content

Mouse Testing Methods in Psychoneuroimmunology 2.0: Measuring Behavioral Responses

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1781))

Abstract

The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. Immunobehavioral phenotyping is a first-line approach when examining the neuroimmune system and its reaction to immune stimulation or suppression. Behavioral response is significantly more sensitive than direct measurement of a single specific bioactive and can quickly and efficiently rule in or out relevance of a particular immune challenge or therapeutic to neuroimmunity. Classically, immunobehavioral research was focused on sickness symptoms related to bacterial infection but neuroimmune activation is now a recognized complication of diseases and disorders ranging from cancer to diabesity to Alzheimer’s. Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity/surrounding environment. In addition, neuroimmune activation can diminish physical activity, precipitate feelings of depression and anxiety, and impair cognitive and executive function. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on pre-experimental conditions that can confound or prevent successful immunobehavioral experimentation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ader R (2000) On the development of psychoneuroimmunology. Eur J Pharmacol 405(1–3):167–176

    Article  CAS  PubMed  Google Scholar 

  2. Maier SF, Watkins LR, Fleshner M (1994) Psychoneuroimmunology—the interface between behavior, brain and immunity. Am Psychol 49(12):1004–1017

    Article  CAS  PubMed  Google Scholar 

  3. Kerschensteiner M, Meinl E, Hohlfeld R (2009) Neuro-immune crosstalk in CNS diseases. Neuroscience 158:1122–1132

    Article  CAS  PubMed  Google Scholar 

  4. Kelley KW et al (2003) Cytokine-induced sickness behavior. Brain Behav Immun 17:S112–S118

    Article  CAS  PubMed  Google Scholar 

  5. Irwin MR (2008) Human psychoneuroimmunology: 20 years of discovery. Brain Behav Immun 22:129–139

    Article  CAS  PubMed  Google Scholar 

  6. Dantzer R (2004) Cytokine-induced sickness behavior: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500:399–411

    Article  CAS  PubMed  Google Scholar 

  7. Johnson DR et al (2007) Acute hypoxia activates the neuroimmune system, which diabetes exacerbates. J Neurosci 27(5):1161–1166

    Article  CAS  PubMed  Google Scholar 

  8. Dantzer R (2001) Cytokine-induced sickness behavior: mechanisms and implications. Ann N Y Acad Sci 933:222–234

    Article  CAS  PubMed  Google Scholar 

  9. Gibertini M (1998) Cytokines and cognitive behavior. Neuroimmunomodulation 5:160–165

    Article  CAS  PubMed  Google Scholar 

  10. Wingfield JC et al (2006) Contexts and ethology of vertebrate aggression: implications for the evolution of hormone-behavior interactions. In: Nelson RJ (ed) Biology of aggression. Oxford University Press, New York

    Google Scholar 

  11. Dantzer R et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lavin DN et al (2011) Fasting induces an anti-inflammatory effect on the neuroimmune system which a high-fat diet prevents. Obesity 19(8):1586–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yi B, Sahn JJ, Ardestani PM et al (2017) Small molecule modulator of sigma 2 receptor is neuroprotective and reduces cognitive deficits and neuroinflammation in experimental models of Alzheimer’s disease. J Neurochem 140:561–575. https://doi.org/10.1111/jnc.13917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paul RH et al (2000) Fatigue and its impact on patients with Myasthenia Gravis. Muscle Nerve 23(9):1402–1406

    Article  CAS  PubMed  Google Scholar 

  15. Carmichael MD et al (2006) Role of brain IL-1β on fatigue after exercise-induced muscle damage. Am J Physiol Regul Integr Comp Physiol 291:R1344–R1348

    Article  CAS  PubMed  Google Scholar 

  16. Rönnbäck L, Hansson E (2004) On the potential role of glutamate transport in mental fatigue. J Neuroinflammation 1:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tanila H (2017) Testing cognitive functions in rodent disease models: present pitfalls and future perspectives. Behav Brain Res. https://doi.org/10.1016/j.bbr.2017.05.040

  18. Warren EJ et al (1997) Coincidental changes in behavior and plasma cortisol in unrestrained pigs after intracerebroventricular injection of tumor necrosis factor-α. Endocrinology 138(6):2365–2371

    Article  CAS  PubMed  Google Scholar 

  19. Antonson AM, Radlowski EC, Lawson MA et al (2017) Maternal viral infection during pregnancy elicits anti-social behavior in neonatal piglet offspring independent of postnatal microglial cell activation. Brain Behav Immun 59:300–312. https://doi.org/10.1016/j.bbi.2016.09.019

    Article  PubMed  Google Scholar 

  20. Rytych JL, Elmore MRP, Burton MD et al (2012) Early life iron deficiency impairs spatial cognition in neonatal piglets. J Nutr 142:2050–2056. https://doi.org/10.3945/jn.112.165522

    Article  CAS  PubMed  Google Scholar 

  21. Grippo AJ (2009) Mechanisms underlying altered mood and cardiovascular dysfunction: the value of neurobiological and behavioral research in animal models. Neurosci Biobehav Rev 33(2):171–180

    Article  CAS  PubMed  Google Scholar 

  22. Johnson A, Hamilton TJ (2017) Modafinil decreases anxiety-like behaviour in zebrafish. PeerJ 5:e2994. https://doi.org/10.7717/peerj.2994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Crawley JN (2003) Behavioral phenotyping of rodents. Comp Med 53(2):140–146

    CAS  PubMed  Google Scholar 

  24. Shigemura N et al (2004) Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology 145(2):839–847

    Article  CAS  PubMed  Google Scholar 

  25. Rodgers RJ, Cole JC (1993) Influence of social isolation, gender, strain and prior novelty on plus-maze behaviour in mice. Physiol Behav 54(4):729–736

    Article  CAS  PubMed  Google Scholar 

  26. Palanza P, Gioiosa L, Parmigiani S (2001) Social stress in mice: gender differences and effects of estrous cycle and social dominance. Physiol Behav 73:411–420

    Article  CAS  PubMed  Google Scholar 

  27. Lightfoot JT et al (2004) Genetic influence on daily wheel running activity level. Physiol Genomics 19:270–276

    Article  CAS  PubMed  Google Scholar 

  28. Basterfield L, Lumley LK, Mathers JC (2009) Wheel running in female C57BL/6J mice: impact of oestrus and dietary fat and effects on sleep and body mass. Int J Obes (Lond) 33:212–218

    Article  CAS  Google Scholar 

  29. Clayton JA, Collins FS (2014) Policy: NIH to balance sex in cell and animal studies. Nature 509:282–283. https://doi.org/10.1038/509282a

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hawkley LC, Cacioppo JT (2004) Stress and the aging immune system. Brain Behav Immun 18(2):114–119

    Article  CAS  PubMed  Google Scholar 

  31. Dilger RN, Johnson RW (2008) Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system. J Leukoc Biol 84(4):932–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin SA et al (2011) Voluntary-wheel exercise training attenuates the visceral adipose, but not central, inflammatory response to LPS in aged C57BL/6J mice. Brain Behav Immun 25(S2):S217–S218. (Abstract)

    Article  Google Scholar 

  33. Ma H et al (2010) Effects of diet-induced obesity and voluntary wheel running on bone properties in young male C57BL/6J mice. Calcif Tissue Int 86:411–419

    Article  CAS  PubMed  Google Scholar 

  34. Obernier JA, Baldwin RL (2006) Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J 47(4):364–369

    Article  CAS  PubMed  Google Scholar 

  35. Tuli JS, Smith JA, Morton DB (1995) Stress measurements in mice after transportation. Lab Anim 29:132–138

    Article  CAS  PubMed  Google Scholar 

  36. Jennings M et al (1998) Refining rodent husbandry: the mouse. Report of the Rodent Refinement Working Party. Lab Anim 32(3):233–259

    Article  CAS  PubMed  Google Scholar 

  37. Clénet F et al (2006) Light/dark cycle manipulation influences mice behavior in the elevated plus maze. Behav Brain Res 166(1):140–149

    Article  PubMed  CAS  Google Scholar 

  38. Ciarleglio CM et al (2009) Population encoding by circadian clock neurons organizes circadian behavior. J Neurosci 29(6):1670–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Goulding EH et al (2008) A robust automated system elucidates mouse home cage behavioral structure. Proc Natl Acad Sci U S A 105(52):20575–20582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. National Research Council of the National Academies (2011) Guide for the care and use of laboratory animals. National Academy of Sciences, Washington, DC

    Google Scholar 

  41. Buchanan JB et al (2008) Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice. Psychoneuroendocrinology 33(6):755–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ajarem JS, Safar E, Ahmad M (2011) Effect of ethanol and thermal stresses on the social behavior of male mice. Asian J Biol Sci 4:362–368

    Article  CAS  Google Scholar 

  43. Goshen I et al (2003) The role of endogenous interleukin-1 in stress-induced adrenal activation and adrenalectomy-induced adrenocorticotropic hormone hypersecretion. Endocrinology 144:4453–4458

    Article  CAS  PubMed  Google Scholar 

  44. Naff KA et al (2007) Noise produced by vacuuming exceeds the hearing thresholds of C57BL/6 and CD1 mice. J Am Assoc Lab Anim Sci 46(1):52–57

    CAS  PubMed  Google Scholar 

  45. Turnbull AV, Rivier C (1995) Regulation of the HPA axis by cytokines. Brain Behav Immun 9(4):253–275

    Article  CAS  PubMed  Google Scholar 

  46. Beishuizen A, Thijs LG (2003) Review: endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. Innate Immun 9(1):3–24

    CAS  Google Scholar 

  47. Pfaff J (1974) Noise as an environmental problem in the animal house. Lab Anim 8:347–354

    Article  CAS  PubMed  Google Scholar 

  48. Arakawa H, Cruz S, Deak T (2011) From models to mechanisms: odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neurosci Biobehav Rev 35(9):1916–1928

    Article  PubMed  Google Scholar 

  49. Alves GJ et al (2010) Odor cues from tumor-bearing mice induces neuroimmune changes. Behav Brain Res 214:357–367

    Article  CAS  PubMed  Google Scholar 

  50. Conour LA, Murray KA, Brown MJ (2006) Preparation of animals for research—issues to consider for rodents and rabbits. ILAR J 47(4):283–293

    Article  CAS  PubMed  Google Scholar 

  51. Balcombe JP, Barnard ND, Sandusky C (2004) Laboratory routines cause animal stress. Contemp Top Lab Anim Sci 43(6):42–51

    CAS  PubMed  Google Scholar 

  52. Hurst JL, West RS (2010) Taming anxiety in laboratory mice. Nat Methods 7(10):825–826

    Article  CAS  PubMed  Google Scholar 

  53. Sun L, Min L, Zhou H et al (2017) Adolescent social isolation affects schizophrenia-like behavior and astrocyte biomarkers in the PFC of adult rats. Behav Brain Res 333:258–266. https://doi.org/10.1016/j.bbr.2017.07.011

    Article  CAS  PubMed  Google Scholar 

  54. Koike H et al (2009) Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behav Brain Res 202(1):114–121

    Article  CAS  PubMed  Google Scholar 

  55. Ma X et al (2011) Social isolation-induced aggression potentiates anxiety and depressive-like behavior in male mice subjected to unpredictable chronic mild stress. PLoS One 6(6):e20955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Avitsur R, Stark JL, Sheridan JF (2001) Social stress induces glucocorticoid resistance in subordinate animals. Horm Behav 39(4):247–257

    Article  CAS  PubMed  Google Scholar 

  57. Pardon M et al (2004) Repeated sensory contact with aggressive mice rapidly leads to an anticipatory increase in core body temperature and physical activity that precedes the onset of aversive responding. Eur J Neurosci 20(4):1033–1050

    Article  PubMed  Google Scholar 

  58. Van De Weerd HA et al (1994) Strain specific behavioural response to environmental enrichment in the mouse. J Exp Anim Sci 36:117–127

    PubMed  Google Scholar 

  59. Olsson AS, Dahlborn K (2001) Improving housing conditions for laboratory mice: a review of ‘environmental enrichment’. Lab Anim 36:243–270

    Article  Google Scholar 

  60. Kent S et al (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13:24–28

    Article  CAS  PubMed  Google Scholar 

  61. Dantzer R et al (1987) Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology (Berl) 91:363–368

    Article  CAS  Google Scholar 

  62. Park SE et al (2011) Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation 8:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krzyszton CP et al (2008) Exacerbated fatigue and motor deficits in interleukin-10-deficient mice after peripheral immune stimulation. Am J Physiol Regul Integr Comp Physiol 295(4):R1109–R1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pecaut MJ et al (2002) Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotarod, and acoustic startle. Cogn Affect Behav Neurosci 2(4):329–340

    Article  PubMed  Google Scholar 

  65. Thor DH, Holloway WR (1982) Social memory of the male laboratory rat. J Comp Physiol Psychol 96(6):1000–1006

    Article  Google Scholar 

  66. Bluthé RM, Dantzer R, Kelley KW (1991) Interleukin-1 mediates behavioural but not metabolic effects of tumor necrosis factor α in mice. Eur J Pharmacol 209:281–283

    Article  PubMed  Google Scholar 

  67. Bluthé RM, Schoenen J, Dantzer R (1990) Androgen-dependent vasopressinergic neurons are involved in social recognition in rats. Brain Res 519:150–157

    Article  PubMed  Google Scholar 

  68. Dantzer R, Bluthé RM, Kelley KW (1991) Androgen-dependent vasopressinergic neurotransmission attenuates interleukin-1-induced sickness behavior. Brain Res 557:115–120

    Article  CAS  PubMed  Google Scholar 

  69. Abraham J et al (2008) Aging sensitizes mice to behavioral deficits induced by central HIV-1 gp120. Neurobiol Aging 29:614–621

    Article  CAS  PubMed  Google Scholar 

  70. Sherry CL et al (2009) Behavioral recovery from acute hypoxia is reliant on leptin. Brain Behav Immun 23(2):169–175

    Article  CAS  PubMed  Google Scholar 

  71. Cao JL et al (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci 30(49):16453–16458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Basso AM et al (2009) Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders. Behav Brain Res 198:83–90

    Article  CAS  PubMed  Google Scholar 

  73. York JM, Blevins NA, McNeil LK, Freund GG (2013) Mouse short- and long-term locomotor activity analyzed by video tracking software. J Vis Exp:e50252–e50252. https://doi.org/10.3791/50252

  74. Buchanan JB, Sparkman NL, Johnson RW (2010) A neurotoxic regimen of methamphetamine exacerbates the febrile and neuroinflammatory response to a subsequent peripheral immune stimulus. J Neuroinflammation 7:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fanelli MT, Kaplan ML (1978) Effects of high fat and high carbohydrate diets on the body composition and oxygen consumption of ob/ob mice. J Nutr 108(9):1491–1500

    Article  CAS  PubMed  Google Scholar 

  76. Jones BJ, Roberts DJ (1968) The quantitative measurement of motor incoordination in naïve mice using and accelerating rotarod. J Pharm Pharmacol 20(4):302–304

    Article  CAS  PubMed  Google Scholar 

  77. Tarantino LM, Gould TJ, Druhan JP, Bucan M (2000) Behavior and mutagenesis screens: the importance of baseline analysis of inbred strains. Mamm Genome 11:555–564

    Article  CAS  PubMed  Google Scholar 

  78. Dang MT et al (2006) Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc Natl Acad Sci U S A 103(41):15254–15259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carter RJ, Morton AJ, Dunnett SB (2001) Motor coordination and balance in rodents. Curr Protoc Neurosci Chapter 8:Unit 8.12

    CAS  PubMed  Google Scholar 

  80. Loftis JM, Huckans M, Morasco BJ (2010) Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis 37:519–533

    Article  CAS  PubMed  Google Scholar 

  81. Deacon RMJ (2006) Burrowing in rodents: a sensitive method for detecting behavioral dysfunction. Nat Protoc 1(1):118–121

    Article  CAS  PubMed  Google Scholar 

  82. Walf AA, Frye CA (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc 2(2):322–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cryan JF, Holmes A (2005) The ascent of mouse: advances in modeling human depression and anxiety. Nat Rev Drug Discov 4:775–790

    Article  CAS  PubMed  Google Scholar 

  84. Gould TD, Dao DT, Kovacsics CE (2009) The open field test. In: Gould T (ed) Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Humana Press, New York

    Chapter  Google Scholar 

  85. Petit-Demouliere B, Chenu F, Bourin M (2004) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 177:245–255

    Article  CAS  Google Scholar 

  86. Avgustinovich DF, Lipina TV, Bondar NP et al (2000) Features of the genetically defined anxiety in mice. Behav Genet 30:101–109

    Article  CAS  PubMed  Google Scholar 

  87. Moon ML, Joesting JJ, Blevins NA et al (2015) IL-4 knock out mice display anxiety-like behavior. Behav Genet 45:451–460. https://doi.org/10.1007/s10519-015-9714-x

    Article  PubMed  PubMed Central  Google Scholar 

  88. Muralidharan A, Kuo A, Jacob M et al (2016) Comparison of burrowing and stimuli-evoked pain behaviors as end-points in rat models of inflammatory pain and peripheral neuropathic pain. Front Behav Neurosci 10:88. https://doi.org/10.3389/fnbeh.2016.00088

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tonelli LH et al (2009) Allergic rhinitis induces anxiety-like behavior and altered social interaction in rodents. Brain Behav Immun 23:784–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Komada M, Takao K, Miyakawa T (2008) Elevated plus maze for mice. J Vis Exp 22:e1088

    Google Scholar 

  91. Fromm L et al (2004) Magnesium attenuates post-traumatic depression/anxiety following diffuse traumatic brain injury in rats. J Am Coll Nutr 23(5):529S–533S

    Article  CAS  PubMed  Google Scholar 

  92. Shepherd JK et al (1994) Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology (Berl) 116:56–64

    Article  CAS  Google Scholar 

  93. Heisler LK et al (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor knockout mutant mice. Proc Natl Acad Sci U S A 95:15049–15054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ennaceur A (2014) Tests of unconditioned anxiety — pitfalls and disappointments. Physiol Behav 135:55–71. https://doi.org/10.1016/j.physbeh.2014.05.032

    Article  CAS  PubMed  Google Scholar 

  95. Hascoë M, Bourin M (2009) The mouse light–dark box test. In: Gould T (ed) Mood and anxiety related phenotypes in mice, Neuromethods, vol 42. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-303-9_11

    Chapter  Google Scholar 

  96. Takao K, Miyakawa T (2006) Light/dark transition test for mice. J Vis Exp:e104–e104. https://doi.org/10.3791/104

  97. Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29(4–5):571–625

    Article  CAS  PubMed  Google Scholar 

  98. Porsolt RD et al (2001) Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci:8.10A.1–8.10A.10

    Google Scholar 

  99. Lad HV et al (2007) Quantitative traits for the tail suspension test: automation, optimization, and BXD RI mapping. Mamm Genome 18:482–491

    Article  PubMed  PubMed Central  Google Scholar 

  100. Steru L et al (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    Article  CAS  Google Scholar 

  101. Cryan JF, Markou A, Lucki I (2002) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23(5):238–245

    Article  CAS  PubMed  Google Scholar 

  102. Cryan JF, Page ME, Lucki I (2005) Differential behavioral effects of the antidepressants ¬reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology (Berl) 182:335–344

    Article  CAS  Google Scholar 

  103. Moreau M et al (2008) Innoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun 22(7):1087–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Udo H et al (2008) Enhanced adult neurogenesis and angiogenesis and altered affective behaviors in mice overexpressing vascular endothelial growth factor 120. J Neurosci 28(53):14522–14536

    Article  CAS  PubMed  Google Scholar 

  105. Hédou G et al (2001) An automated analysis of rat behavior in the forced swim test. Pharmacol Biochem Behav 70(1):65–76

    Article  PubMed  Google Scholar 

  106. DSM-IV (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychological Association, Washington, DC

    Google Scholar 

  107. Strekalova T, Steinbusch H (2009) Factors of reproducibility of anhedonia induction in a chronic stress depression model in mice. In: Gould T (ed) Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Humana Press, New York

    Google Scholar 

  108. Niemi MB et al (2008) Neuro-immune associative learning. In: Lajtha A, Galoyan A, Besedovski HO (eds) Handbook of neurochemistry and molecular neurobiology. Springer, New York

    Google Scholar 

  109. Brennan PA, Keverne EB (1997) Neural mechanisms of mammalian olfactory learning. Prog Neurobiol 51(4):457–481

    Article  CAS  PubMed  Google Scholar 

  110. Bryan KJ et al (2009) Chapter 1: transgenic mouse models of Alzheimer’s disease: ¬behavioral testing and considerations. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  111. Bevins RA, Besheer J (2006) Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study ‘recognition memory’. Nat Protoc 1(3):1306–1311

    Article  PubMed  Google Scholar 

  112. Stefanko DP et al (2009) Modulation of long-term memory for object recognition via HDAC inhibition. Proc Natl Acad Sci U S A 106(23):9447–9452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chiu GS, Chatterjee D, Darmody PT et al (2012) Hypoxia/reoxygenation impairs memory formation via adenosine-dependent activation of caspase 1. J Neurosci 32:13945–13955. https://doi.org/10.1523/JNEUROSCI.0704-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Win-Shwe TT, Fujimaki H (2012) Acute administration of toluene affects memory retention in novel object recognition test and memory function-related gene expression in mice. J Appl Toxicol 32(4):300–304

    Article  CAS  PubMed  Google Scholar 

  115. Gainey SJ, Kwakwa KA, Bray JK et al (2016) Short-term high-fat diet (HFD) induced anxiety-like behaviors and cognitive impairment are improved with treatment by glyburide. Front Behav Neurosci 10:156. https://doi.org/10.3389/fnbeh.2016.00156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Towers AE, Oelschlager ML, Patel J et al (2017) Acute fasting inhibits central caspase-1 activity reducing anxiety-like behavior and increasing novel object and object location recognition. Metabolism 71:70–82. https://doi.org/10.1016/j.metabol.2017.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wehner JM, Radcliffe RA (2004) Cued and contextual fear conditioning in mice. Curr Protoc Neurosci Chapter 8:Unit 8.5C

    PubMed  Google Scholar 

  118. Deacon RMJ, Rawlins JNP (2006) T-maze alternation in the rodent. Nat Protoc 1(1):7–12

    Article  PubMed  Google Scholar 

  119. Lalonde R (2002) The neurological basis of spontaneous alternation. Neurosci Biobehav Rev 26:91–104

    Article  CAS  PubMed  Google Scholar 

  120. Bekker A et al (2006) Isoflurane preserves spatial working memory in adult mice after moderate hypoxia. Anesth Analg 102:1134–1138

    Article  CAS  PubMed  Google Scholar 

  121. Harrison FE et al (2006) Spatial and nonspatial escape strategies in the Barnes maze. Learn Mem 13(6):809–819

    Article  PubMed  PubMed Central  Google Scholar 

  122. O’Leary TP, Brown RE (2009) Visuo-spatial learning and memory deficits on the Barnes maze in the 16-month-old APPswe/PS1dE9 mouse model of Alzheimer’s disease. Behav Brain Res 201:120–127

    Article  PubMed  Google Scholar 

  123. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858

    Article  PubMed  PubMed Central  Google Scholar 

  124. Rosczyk HA, Sparkman NL, Johnson RW (2008) Neuroinflammation and cognitive function in aged mice following minor surgery. Exp Gerontol 43:840–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carli M, Robbins TW, Evenden JL, Everitt BJ (1983) Effects of lesions to ascending noradrenergic neurones on performance of a 5-choice serial reaction task in rats; implications for theories of dorsal noradrenergic bundle function based on selective attention and arousal. Behav Brain Res 9:361–380

    Article  CAS  PubMed  Google Scholar 

  126. Horner AE, Heath CJ, Hvoslef-Eide M et al (2013) The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc 8:1961–1984. https://doi.org/10.1038/nprot.2013.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bushnell PJ, Strupp BJ (2009) Assessing attention in rodents. CRC Press/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  128. Young JW, Light GA, Marston HM et al (2009) The 5-choice continuous performance test: evidence for a translational test of vigilance for mice. PLoS One 4:e4227. https://doi.org/10.1371/journal.pone.0004227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Grissom NM, Herdt CT, Desilets J et al (2015) Dissociable deficits of executive function caused by gestational adversity are linked to specific transcriptional changes in the prefrontal cortex. Neuropsychopharmacology 40:1353–1363. https://doi.org/10.1038/npp.2014.313

    Article  CAS  PubMed  Google Scholar 

  130. Dishman RK et al (2006) Neurobiology of exercise. Obesity 14:345–346

    Article  CAS  PubMed  Google Scholar 

  131. Leasure JL, Jones M (2008) Forced a voluntary exercise differentially affect brain and behavior. Neuroscience 156:456–465

    Article  CAS  PubMed  Google Scholar 

  132. Garland TH Jr et al (2011) The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol 214(pt 2):206–229

    Article  PubMed  Google Scholar 

  133. Noakes TD (2011) Time to move behind a brainless exercise physiology: the evidence for complex regulation of human exercise performance. Appl Physiol Nutr Metab 36:23–35

    Article  PubMed  Google Scholar 

  134. Takeshita H, Yamamoto K, Nozato S et al (2017) Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Sci Rep 7:42323. https://doi.org/10.1038/srep42323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Messina S, Bitto A, Aguennouz M et al (2006) Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol 198:234–241. https://doi.org/10.1016/j.expneurol.2005.11.021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health (DK064862, NS058525, and AA019357 to G.G.F.), USDA National Institute of Food and Agriculture, Hatch project #ILLU971-32.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory G. Freund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Towers, A.E., York, J.M., Baynard, T., Gainey, S.J., Freund, G.G. (2018). Mouse Testing Methods in Psychoneuroimmunology 2.0: Measuring Behavioral Responses. In: Yan, Q. (eds) Psychoneuroimmunology. Methods in Molecular Biology, vol 1781. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7828-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7828-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7827-4

  • Online ISBN: 978-1-4939-7828-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics