Skip to main content

Mathematical Modeling Approaches in Plant Metabolomics

  • Protocol
  • First Online:
Plant Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1778))

Abstract

The experimental analysis of a plant metabolome typically results in a comprehensive and multidimensional data set. To interpret metabolomics data in the context of biochemical regulation and environmental fluctuation, various approaches of mathematical modeling have been developed and have proven useful. In this chapter, a general introduction to mathematical modeling is presented and discussed in context of plant metabolism. A particular focus is laid on the suitability of mathematical approaches to functionally integrate plant metabolomics data in a metabolic network and combine it with other biochemical or physiological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan JA, Rhodes D (2002) Mathematical modeling of plant metabolic pathways. Metab Eng 4:80–89

    Article  CAS  PubMed  Google Scholar 

  2. Prusinkiewicz P (2004) Modeling plant growth and development. Curr Opin Plant Biol 7:79–83

    Article  CAS  PubMed  Google Scholar 

  3. Fiehn O (2002) Metabolomics-the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  4. Weckwerth W (2011) Unpredictability of metabolism-the key role of metabolomics science in combination with next-generation genome sequencing. Anal Bioanal Chem 400:1967–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liberman LM, Sozzani R, Benfey PN (2012) Integrative systems biology: an attempt to describe a simple weed. Curr Opin Plant Biol 15:162–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoermiller II, Naegele T, Augustin H et al (2017) Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana. Plant Cell Environ 40:602–610

    Article  CAS  PubMed  Google Scholar 

  7. Hurry V (2017) Metabolic reprogramming in response to cold stress is like real estate, it’s all about location. Plant Cell Environ 40:599–601

    Article  CAS  PubMed  Google Scholar 

  8. Fürtauer L, Weckwerth W, Nägele T (2016) A benchtop fractionation procedure for subcellular analysis of the plant metabolome. Front Plant Sci 7:1912

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nägele T (2014) Linking metabolomics data to underlying metabolic regulation. Front Mol Biosci 1:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Zhang X-S, Chen L (2010) Optimization meets systems biology. BMC Syst Biol 4:S1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Banga JR (2008) Optimization in computational systems biology. BMC Syst Biol 2:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reali F, Priami C, Marchetti L (2017) Optimization algorithms for computational systems biology. Front Appl Math Stat 3:6

    Article  Google Scholar 

  13. Loomis RS, Rabbinge R, Ng E (1979) Explanatory models in crop physiology. Annu Rev Plant Physiol 30:339–367

    Article  Google Scholar 

  14. Rios-Estepa R, Lange BM (2007) Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68:2351–2374

    Article  CAS  PubMed  Google Scholar 

  15. Klipp E, Liebermeister W (2006) Mathematical modeling of intracellular signaling pathways. BMC Neurosci 7(Suppl 1):S10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chew YH, Smith RW, Jones HJ et al (2014) Mathematical models light up plant signaling. Plant Cell 26:5–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rohwer JM (2012) Kinetic modelling of plant metabolic pathways. J Exp Bot 63:2275–2292

    Article  CAS  PubMed  Google Scholar 

  18. Gombert AK, Nielsen J (2000) Mathematical modelling of metabolism. Curr Opin Biotechnol 11:180–186

    Article  CAS  PubMed  Google Scholar 

  19. Giersch C (2000) Mathematical modelling of metabolism. Curr Opin Plant Biol 3:249–253

    Article  CAS  PubMed  Google Scholar 

  20. Pettersson G, Ryde-Pettersson U (1988) A mathematical model of the Calvin photosynthesis cycle. Eur J Biochem 175:661–672

    Article  CAS  PubMed  Google Scholar 

  21. Pettersson G (1997) Control properties of the Calvin photosynthesis cycle at physiological carbon dioxide concentrations. Biochim Biophys Acta 1322:173–182

    Article  CAS  Google Scholar 

  22. Pokhilko A, Bou-Torrent J, Pulido P et al (2015) Mathematical modelling of the diurnal regulation of the MEP pathway in Arabidopsis. New Phytol 206:1075–1085

    Article  CAS  PubMed  Google Scholar 

  23. Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1:159–162

    Article  Google Scholar 

  24. Schomburg I, Hofmann O, Baensch C et al (2000) Enzyme data and metabolic information: BRENDA, a resource for research in biology, biochemistry, and medicine. Gene Funct Dis 1:109–118

    Article  CAS  Google Scholar 

  25. Hoops S, Sahle S, Gauges R et al (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics 22:3067–3074

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt H (2007) SBaddon: high performance simulation for the Systems Biology Toolbox for MATLAB. Bioinformatics 23:646–647

    Article  CAS  PubMed  Google Scholar 

  27. Steuer R, Gross T, Selbig J, Blasius B (2006) Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci U S A 103:11868–11873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Reznik E, Segre D (2010) On the stability of metabolic cycles. J Theor Biol 266:536–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Henkel S, Nägele T, Hörmiller I et al (2011) A systems biology approach to analyse leaf carbohydrate metabolism in Arabidopsis thaliana. EURASIP J Bioinform Syst Biol 2011:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fürtauer L, Nägele T (2016) Approximating the stabilization of cellular metabolism by compartmentalization. Theory Biosci 135:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiao W-B, Schneeberger K (2017) The impact of third generation genomic technologies on plant genome assembly. Curr Opin Plant Biol 36:64–70

    Article  CAS  PubMed  Google Scholar 

  32. Vivek-Ananth RP, Samal A (2016) Advances in the integration of transcriptional regulatory information into genome-scale metabolic models. Biosystems 147:1–10

    Article  CAS  PubMed  Google Scholar 

  33. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nägele T, Mair A, Sun X et al (2014) Solving the differential biochemical Jacobian from metabolomics covariance data. PLoS One 9:e92299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kügler P, Yang W (2014) Identification of alterations in the Jacobian of biochemical reaction networks from steady state covariance data at two conditions. J Math Biol 68:1757–1783

    Article  PubMed  Google Scholar 

  36. Doerfler H, Lyon D, Nägele T et al (2013) Granger causality in integrated GC-MS and LC-MS metabolomics data reveals the interface of primary and secondary metabolism. Metabolomics 9:564–574

    Article  CAS  PubMed  Google Scholar 

  37. Sun XL, Weckwerth W (2012) COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data. Metabolomics 8:S81–S93

    Article  CAS  Google Scholar 

  38. Nukarinen E, Nägele T, Pedrotti L, Wurzinger B, Mair A, Landgraf R, Börnke F, Hanson J, Teige M, Baena-Gonzalez E, Dröge-Laser W, Weckwerth W (2016) Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci Rep 6(1):31697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang L, Nägele T, Doerfler H, Fragner L, Chaturvedi P, Nukarinen E, Bellaire A, Huber W, Weiszmann J, Engelmeier D, Ramsak Z, Gruden K, Weckwerth W (2016) System level analysis of cacao seed ripening reveals a sequential interplay of primary and secondary metabolism leading to polyphenol accumulation and preparation of stress resistance. Plant J 87(3):318–332

    Article  CAS  PubMed  Google Scholar 

  40. Schelter B (2006) Handbook of time series analysis recent theoretical developments and applications. Weinheim, Wiley-VCH

    Book  Google Scholar 

  41. Derryberry DR (2014) Basic data analysis for time series with R. Wiley, Hoboken, NJ

    Book  Google Scholar 

  42. Smilde AK, Westerhuis JA, Hoefsloot HCJ et al (2010) Dynamic metabolomic data analysis: a tutorial review. Metabolomics 6:3–17

    Article  CAS  PubMed  Google Scholar 

  43. Xia J, Sinelnikov IV, Wishart DS (2011) MetATT: a web-based metabolomics tool for analyzing time-series and two-factor datasets. Bioinformatics 27:2455–2456

    Article  CAS  PubMed  Google Scholar 

  44. Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinformatics 55:14.10.1–14.10.91

    Article  Google Scholar 

  45. Girbig D, Selbig J, Grimbs S (2012) A MATLAB toolbox for structural kinetic modeling. Bioinformatics 28:2546–2547

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt H, Jirstrand M (2006) Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22:514–515

    Article  CAS  PubMed  Google Scholar 

  47. Aurich MK, Fleming RMT, Thiele I (2016) MetaboTools: a comprehensive toolbox for analysis of genome-scale metabolic models. Front Physiol 7:327

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fitzpatrick MA, McGrath CM, Young SP (2014) Pathomx: an interactive workflow-based tool for the analysis of metabolomic data. BMC Bioinformatics 15:396

    Article  PubMed  PubMed Central  Google Scholar 

  49. Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:414–426

    Google Scholar 

  50. van den Berg RA, Hoefsloot HC, Westerhuis JA et al (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mintz-Oron S, Meir S, Malitsky S et al (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci U S A 109:339–344

    Article  PubMed  Google Scholar 

  52. Bogart E, Myers CR (2016) Multiscale metabolic modeling of C4 plants: connecting nonlinear genome-scale models to leaf-scale metabolism in developing maize leaves. PLoS One 11:e0151722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shaw R, Kundu S (2015) Flux balance analysis of genome-scale metabolic model of rice (Oryza sativa): aiming to increase biomass. J Biosci 40:819–828

    Article  CAS  PubMed  Google Scholar 

  54. Nägele T, Fürtauer L, Nagler M et al (2016) A strategy for functional interpretation of metabolomic time series data in context of metabolic network information. Front Mol Biosci 3:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Austrian Science Fund (FWF), Project I 2071, and the Vienna Metabolomics Center ViMe at the University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nägele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fürtauer, L., Weiszmann, J., Weckwerth, W., Nägele, T. (2018). Mathematical Modeling Approaches in Plant Metabolomics. In: António, C. (eds) Plant Metabolomics. Methods in Molecular Biology, vol 1778. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7819-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7819-9_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7818-2

  • Online ISBN: 978-1-4939-7819-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics