Skip to main content

Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis

  • Protocol
  • First Online:
Root Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1761))

Abstract

Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) is a powerful technique to investigate in vivo transcription factor (TF) binding to DNA, as well as chromatin marks. Here we provide a detailed protocol for all the key steps to perform ChIP-seq in Arabidopsis thaliana roots, also working on other A. thaliana tissues and in most non-ligneous plants. We detail all steps from material collection, fixation, chromatin preparation, immunoprecipitation, library preparation, and finally computational analysis based on a combination of publicly available tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morohashi K, Xie Z, Grotewold E (2009) Gene-specific and genome-wide ChIP approaches to study plant transcriptional networks. Methods Mol Biol 553:3–12

    Article  CAS  PubMed  Google Scholar 

  3. Chow BY, Kay SA (2013) Global approaches for telling time: omics and the Arabidopsis circadian clock. Semin Cell Dev Biol 24(5):383–392

    Article  PubMed  PubMed Central  Google Scholar 

  4. Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5(9):829–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferrier T, Matus JT, Jin J, Riechmann JL (2011) Arabidopsis paves the way: genomic and network analyses in crops. Curr Opin Biotechnol 22(2):260–270

    Article  CAS  PubMed  Google Scholar 

  6. Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A 82(19):6470–6474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghavi-Helm Y, Zhao B, Furlong EE (2016) Chromatin immunoprecipitation for analyzing transcription factor binding and histone modifications in Drosophila. Methods Mol Biol 1478:263–277

    Article  CAS  PubMed  Google Scholar 

  8. Ballare C, Castellano G, Gaveglia L, Althammer S, Gonzalez-Vallinas J, Eyras E, Le Dily F, Zaurin R, Soronellas D, Vicent GP, Beato M (2013) Nucleosome-driven transcription factor binding and gene regulation. Mol Cell 49(1):67–79

    Article  CAS  PubMed  Google Scholar 

  9. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25(15):1952–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang W, Loganantharaj R, Schroeder B, Fargo D, Li L (2013) PAVIS: a tool for Peak Annotation and Visualization. Bioinformatics 29(23):3097–3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38(Web Server issue):W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eden E, Lipson D, Yogev S, Yakhini Z (2007) Discovering motifs in ranked lists of DNA sequences. PLoS Comput Biol 3(3):e39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gene Ontology Consortium (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res 43(Database issue):D1049–D1056

    Article  CAS  Google Scholar 

  19. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    PubMed  CAS  Google Scholar 

  20. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Franco-Zorrilla JM, Lopez-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci U S A 111(6):2367–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Malley RC, Huang SS, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165(5):1280–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen K, Xi Y, Pan X, Li Z, Kaestner K, Tyler J, Dent S, He X, Li W (2013) DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res 23(2):341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44(W1):W160–W165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian B, Yang J, Brasier AR (2012) Two-step cross-linking for analysis of protein-chromatin interactions. Methods Mol Biol 809:105–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

S.C. was supported by an EMBO long-term fellowship (ALTF 290-2013). V.C. lab is supported by the Thailand Research Fund (TRF) Grant for New Scholar (MRG6080235); Newton Advanced Fellowship through TRF (DBG60800003) and Royal Society (NA160153); the Faculty of Science, Mahidol University; and the Crown Property Bureau Foundation. The Wigge lab is supported by the Gatsby Charitable Foundation, the European Research Council, and the Biotechnology and Biological Sciences Research Council. The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandra Cortijo or Philip A. Wigge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cortijo, S., Charoensawan, V., Roudier, F., Wigge, P.A. (2018). Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis. In: Ristova, D., Barbez, E. (eds) Root Development. Methods in Molecular Biology, vol 1761. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7747-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7747-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7746-8

  • Online ISBN: 978-1-4939-7747-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics