Skip to main content

Controlling Confinement and Topology to Study Collective Cell Behaviors

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1749))

Abstract

Confinement and substrate topology strongly affect the behavior of cell populations and, in particular, their collective migration. In vitro experiments dealing with these aspects require strategies of surface patterning that remain effective over long times (typically several days) and ways to control the surface topology in three dimensions. Here, we describe protocols addressing these two aspects. High-resolution patterning of a robust cell-repellent coating is achieved by etching the coating through a photoresist mask patterned directly on the coated surface. Out-of-plane curvature can be controlled using glass wires or corrugated “wavy” surfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Change history

  • 18 March 2023

    The original version of this chapter was incorrectly published with the following note

References

  1. Scarpa E, Mayor R (2016) Collective cell migration in development. J Cell Biol 212:143–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rørth P (2012) Fellow travellers: emergent properties of collective cell migration. EMBO Rep 13:984–991

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hakim V, Silberzan P (2017) Collective cell migration: a physics perspective. Rep Prog Phys 80(7):076601

    Article  PubMed  Google Scholar 

  4. Gov NS (2014) Collective cell migration. In: Kaunas R, Zemel A (eds) Cell and matrix mechanics. CRC Press, Boca Raton, FL, pp 219–238

    Google Scholar 

  5. Weigelin B, Bakker G-J, Friedl P (2012) Intravital third harmonic generation microscopy of collective melanoma cell invasion. IntraVital 1:32–43

    Article  PubMed  Google Scholar 

  6. Vedula SRK, Leong MC, Lai TL et al (2012) Emerging modes of collective cell migration induced by geometrical constraints. Proc Natl Acad Sci U S A 109:12974–12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yevick HG, Duclos G, Bonnet I et al (2015) Architecture and migration of an epithelium on a cylindrical wire. Proc Natl Acad Sci 112:5944–5949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zheng Y, Chen J, Craven M et al (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci 109:9342–9347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ye M, Sanchez HM, Hultz M et al (2014) Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci Rep 4:4681

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tourovskaia A, Barber T, Wickes BT et al (2003) Micropatterns of chemisorbed cell adhesion-repellent films using oxygen plasma etching and elastomeric masks. Langmuir 19:4754–4764

    Article  CAS  Google Scholar 

  11. Tourovskaia A, Figueroa-Masot X, Folch A (2006) Long-term microfluidic cultures of myotube microarrays for high-throughput focal stimulation. Nat Protoc 1:1092–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deforet M, Hakim V, Yevick HG et al (2014) Emergence of collective modes and tri-dimensional structures from epithelial confinement. Nat Commun 5:3747

    Article  CAS  PubMed  Google Scholar 

  13. Nier V, Deforet M, Duclos G et al (2015) Tissue fusion over nonadhering surfaces. Proc Natl Acad Sci 112:9546–9551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duclos G, Erlenkämper C, Joanny J-F et al (2017) Topological defects in confined populations of spindle-shaped cells. Nat Phys 13:58–62

    Article  CAS  Google Scholar 

  15. Azioune A, Carpi N, Tseng Q et al (2010) Protein micropatterns. A direct printing protocol using deep UVs. Methods Cell Biol 97:133–146

    Article  CAS  PubMed  Google Scholar 

  16. Thery M, Piel M (2014) Scientific protocols – adhesive micropatterns for cells: a microcontact printing protocol. Sci Protoc. https://doi.org/10.5281/zenodo.13592

  17. Azioune A, Storch M, Bornens M et al (2009) Simple and rapid process for single cell micro-patterning. Lab Chip 9:1640–1642

    Article  CAS  PubMed  Google Scholar 

  18. Duclos G, Garcia S, Yevick HG et al (2014) Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10:2346–2353

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Groupement des Entreprises Françaises dans la Lutte contre le Cancer (GEFLUC) Ile-de-France, the Région Ile-de-France Domaine d’Intérêt Majeur (DIM) Nano-K, the Association pour la Recherche sur le Cancer (ARC), the EU cofund PRESTIGE post-doc program, the EU cofund IC-3i PhD program, and the Fondation Pierre-Gilles de Gennes. The “Biology-inspired Physics at MesoScales” group is a member of the CelTisPhyBio Labex and of the Institut Pierre-Gilles de Gennes. It is a pleasure to thank Mohamed El Beheiry for his help in the 3D processing of our images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Silberzan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Duclos, G. et al. (2018). Controlling Confinement and Topology to Study Collective Cell Behaviors. In: Gautreau, A. (eds) Cell Migration. Methods in Molecular Biology, vol 1749. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7701-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7701-7_28

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7700-0

  • Online ISBN: 978-1-4939-7701-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics