Skip to main content

Antimicrobials of Plant Origin

  • Chapter
  • First Online:

Part of the book series: Food Microbiology and Food Safety ((RESDEV))

Abstract

Antimicrobial compounds of plant origin are used as natural preservatives to control spoilage and pathogenic bacteria in foods. The food safety applications of these plant derived compounds are considered as natural alternatives to chemical antimicrobial agents, in addition to being cheaper and safer substitutes. These bioactive compounds in plants are secondary metabolites, usually produced and accumulated in various plant parts and their activities depend on the concentration, composition, structure, and functional groups. Major examples of such plant compounds include vitamins, antioxidants, essential oils, hydrocolloids, proteins, aldehydes, flavonoids, and other phytochemicals. These compounds have been documented to exhibit antimicrobial properties against various foodborne pathogens. The food safety applications of selected plant derived antimicrobials in controlling survival and resistance of pathogens in foods are briefly discussed in this chapter.

This is a preview of subscription content, log in via an institution.

References

  • Abreu AC, McBain AJ, Simoes M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29(9):1007–1021

    Article  CAS  Google Scholar 

  • Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75

    Article  Google Scholar 

  • Alasalvar C, Grigor JM, Zhang D, Quantick PC, Shahidi F (2001) Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J Agric Food Chem 49:1410–1416

    Article  CAS  Google Scholar 

  • An BJ, Kwak JH, Son JH, Park JM, Lee JY, Jo C et al (2004) Biological and antimicrobial activity of irradiated green tea polyphenols. Food Chem 88(4):549–555

    Article  CAS  Google Scholar 

  • Anastasiadi M, Chorianopoulos NG, Nychas GJE, Haroutounian SA (2009) Antilisterial activities of polyphenol-rich extracts of grapes and vinification by-products. J Agric Food Chem 57:457–463

    Article  CAS  Google Scholar 

  • Arora DS, Kaur J (1999) Antimicrobial activity of spices. Int J Antimicrob Agents 12(3):257–262

    Article  CAS  Google Scholar 

  • Babu D, Crandall PG, Johnson CL, O'Bryan CA, Ricke SC (2013) Efficacy of antimicrobials extracted from organic pecan shell for inhibiting the growth of Listeria Spp. J Food Sci 78(12):M1899–M1903

    Article  CAS  Google Scholar 

  • Babu D, Kushwaha K, Juneja VK (2016) Emergence of drug-resistance pathogens. In: Bari L, Ukuku DO (eds) Foodborne pathogens and food safety. CRC Press, Boaca Raton

    Google Scholar 

  • Basniwal RK, Butter HS, Jain VK, Jain N (2011) Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem 59:2056–2061

    Article  Google Scholar 

  • Bassett EJ, Keith MS, Armelagos GJ, Martin DL, Villanueva AR (1980) Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D.350). Science 209:1532–1534

    Article  CAS  Google Scholar 

  • Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133(10):3248S–3254S

    Article  CAS  Google Scholar 

  • Benavente-Garcia O, Castillo J, Marin FR, Ortuno A, Del Rio JA (1997) Uses and properties of citrus flavonoids. J Agric Food Chem 45:4505–4515

    Article  CAS  Google Scholar 

  • Bisha B, Weinsetel N, Brehm-Stecher BF, Mendonca A (2010) Antilisterial effects of gravinol-s grape seed extract at low levels in aqueous media and its potential application as a produce wash. J Food Prot 73:266–273

    Article  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    Article  CAS  Google Scholar 

  • Burdock GA (2005) Fenaroli’s handbook of flavor ingredients, 5th edn. CRC Press, Boca Raton

    Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94:223–253

    Article  CAS  Google Scholar 

  • Burt SA, Reinders RD (2003) Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett Appl Microbiol 36:162–167

    Article  CAS  Google Scholar 

  • Cabral LDC, Pinto VF, Patriarca A (2013) Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int J Food Microbiol 166(1):1–14

    Article  Google Scholar 

  • Chacko SM, Thambi PT, Kuttan R, Nishigaki I (2010) Beneficial effects of green tea: a literature review. Chin Med 5:13

    Article  Google Scholar 

  • Charu G, Amar PG, Ramesh CU, Archana K (2008) Antimicrobial activity of some herbal oils against common food-borne pathogens. Afr J Microbiol Res 2:258–261

    Google Scholar 

  • Cheynier V (2012) Phenolic compounds: from plants to foods. Phytochem Rev 11:152–177

    Article  Google Scholar 

  • Chong J, Anne P, Philippe H (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155

    Article  CAS  Google Scholar 

  • Cikricki S, Mozioglu E, Yylmaz H (2008) Biological activity of curcuminoids isolated from Curcuma longa. Rec Nat Prod 12:19–24

    Google Scholar 

  • Clifford M (2001) A nomenclature for phenols with special reference to tea. Crit Rev Food Sci Nutr 41(Suppl):393–397

    Google Scholar 

  • Cook M, Molto E, Anderson C (1989) Fluorochrome labelling in Roman period skeletons from Dakhleh Oasis, Egypt. Am J Phys Anthropol 80:137–143

    Article  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    CAS  Google Scholar 

  • Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    Article  CAS  Google Scholar 

  • Frankel EN, Waterhouse AL, Kinsella JE (1993) Inhibition of human LDL oxidation by resveratrol. Lancet 341(8852):1103–1104

    Article  CAS  Google Scholar 

  • Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot 65(10):1545–1560

    Article  CAS  Google Scholar 

  • Gadang VP, Hettiarachchy NS, Johnson MG, Owens CM (2008) Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a turkey frankfurter system. J Food Sci 73:389–394

    Article  Google Scholar 

  • Galal AM (2006) Natural product-based phenolic and nonphenolic antimicrobial food preservatives and 1,2,3,4-tetrahydroxybenzene as a highly effective representative: a review of patent literature 2000–2005. Recent Pat Antiinfect Drug Discov 1(2):231–239

    Article  CAS  Google Scholar 

  • Gharras HE (2009) Polyphenols: food sources, properties and applications—a review. Int J Food Sci Technol 44:2512–2518

    Article  Google Scholar 

  • Gul P, Bakht J (2015) Antimicrobial activity of turmeric extract and its potential use in food industry. J Food Sci Technol 52(4):2272–2279

    Article  CAS  Google Scholar 

  • Gupta S, Ravishankar S (2005) Comparison of the antimicrobial activity of garlic, ginger, carrot, and turmeric pastes against Escherichia coli O157:H7 in laboratory buffer and ground beef. Foodborne Pathog Dis 2(4):330–340

    Article  CAS  Google Scholar 

  • Hamilton-Miller JMT (1995) Antimicrobial properties of tea (Camellia sinensis L.) Antimicrob Agents Chemother 39(11):2375–2377

    Article  CAS  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990

    Article  CAS  Google Scholar 

  • Harborne JB, Baxter H, Moss GP (eds) (1999) Phytochemical dictionary: handbook of bioactive compounds from plants, 2nd edn. Taylor & Francis, London

    Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584

    Article  CAS  Google Scholar 

  • Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LGG, Wright A v (1998) Characterization of the action of selected essential oil components on gram-negative bacteria. J Agric Food Chem 46:3590–3595

    Article  CAS  Google Scholar 

  • Henry-Vitrac C, Desmouliere A, Girard D, Merillon JM, Krisa S (2006) Transport, deglycosylation, and metabolism of trans-piceid by small intestinal epithelial cells. Eur J Nutr 45:376–382

    Article  CAS  Google Scholar 

  • Hussain AI, Anwar F, Shahid M, Ashraf M, Przybylski R (2010) Chemical composition, antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. J Essent Oil Res 22:78–84

    Article  CAS  Google Scholar 

  • Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:1–12

    Article  Google Scholar 

  • Ignacimuthu S, Pavunraj M, Duraipandiyan V, Raja N, Muthu C (2009) Antibacterial activity of a novel quinone from the leaves of Pergularia daemia (Forsk.), a traditional medicinal plant. Asian J Tradit Med 4(1):36–40

    CAS  Google Scholar 

  • Igura K, Ohta T, Kuroda Y, Kaji K (2001) Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett 171(1):11–16

    Article  CAS  Google Scholar 

  • Juneja V, Hwang CA, Freidman M (2010) Thermal inactivation and post treatment growth during storage of multiple Salmonella serotypes in ground beef as affected by sodium lactate and oregano oil. J Food Sci 75:1–6

    Article  Google Scholar 

  • Kapoor A (1997) Antifungal activity of fresh juice and aqueous extracts of turmeric and ginger (Zingiber officinale). J Phytopathol Res 10:59–62

    Google Scholar 

  • Kataliníc V, Možina SS, Skroza D, Generalić I, Abramovič H, Miloš M, Ljubenkov I, Piskernik S, Terpinc P, Boban M (2010) Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem 119:715–723

    Article  Google Scholar 

  • Keyes K, Lee MD, Maurer JJ (2003) Antibiotics: mode of action, mechanisms of resistance and transfer. In: Torrance ME, Isaacson RE (eds) Microbial food safety in animal agriculture current topics. Iowa State Press, Ames, pp 45–56

    Chapter  Google Scholar 

  • Lambert RJW, Skandamis PN, Coote P, Nychas G-JE (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    Article  CAS  Google Scholar 

  • Langeveld WT, Veldhuizen EJ, Burt SA (2014) Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol 40(1):76–94

    Article  CAS  Google Scholar 

  • Leonard SS, Xia C, Jiang BH, Stinefelt B, Klandorf H, Harris GK, Shi X (2003) Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun 309(4):1017–1026

    Article  CAS  Google Scholar 

  • Liu C, Wang L, Wang J, Wu B, Liu WM, Fan P, Liang Z, Li S (2013) Resveratrols in Vitis berry skins and leaves: their extraction and analysis by HPLC. Food Chem 136:643–649

    Article  CAS  Google Scholar 

  • Lu J, Wu S (2010) Bioactivity of essential oil from Ailanthus altissima bark against 4 major stored-grain insects. Afr J Microbiol Res 4:154–157

    Google Scholar 

  • Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bio efficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81(suppl):230S–242S

    CAS  Google Scholar 

  • Maqsood S, Benjakul S, Shahidi F (2012) Emerging role of phenolic compounds as natural food additives in fish and fish products. Crit Rev Food Sci Nutr 53(2):162–179

    Article  Google Scholar 

  • Martens DA (2002) Relationship between plant phenolic acids released during soil mineralization and aggregate stabilization. Soil Sci Soc Am J 66:1857–1867

    Article  CAS  Google Scholar 

  • Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacol Rev 52:673–751

    CAS  Google Scholar 

  • Mohammad RI, Rubina A, Obaidur R, Mohammad A, Akbar MA, Al-Amin M, Alam KD, Lyzu F (2010) In vitro antimicrobial activities of four medicinally important plants in Bangladesh. Eur J Sci Res 39:199–206

    Google Scholar 

  • Moore KL, Patel JR, Jaroni D, Friedman M, Ravishankar S (2011) Antimicrobial activity of apple, hibiscus, olive, and hydrogen peroxide formulations against Salmonella enterica on organic leafy greens. J Food Prot 74:1676–1683

    Article  Google Scholar 

  • Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals 6:1451–1474

    Article  Google Scholar 

  • Negi PS (2012) Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol 156(1):7–17

    Article  Google Scholar 

  • Negi PS, Jayaprakasha KG, Jagan L, Rao M, Sakariah KK (1999) Antibacterial activity of turmeric oil: a byproduct from curcumin. J Agric Food Chem 47:4297–4300

    Article  CAS  Google Scholar 

  • Nelson ML, Dinardo A, Hochberg J, Armelagos GJ (2010) Brief communication: mass spectroscopic characterization of tetracycline in the skeletal remains of an ancient population from Sudanese Nubia 350–550 CE. Am J Phys Anthropol 143:151–154

    Article  Google Scholar 

  • Nile SH, Park SW (2014) Edible berries: bioactive components and their effect on human health. Nutrition 30(2):134–144

    Article  CAS  Google Scholar 

  • Palaniappan K, Holley RA (2010) Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol 140(3):164–168

    Article  CAS  Google Scholar 

  • Parr AJ, Bolwell GP (2000) Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J Sci Food Agric 80:985–1012

    Article  CAS  Google Scholar 

  • Paulo L, Oleastro M, Gallardo E, Queiroz JA, Domingues F (2011) Ch. 13. In: Mendez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advaces, vol 2. Formatex Research Center, Badajoz, pp 1225–1235

    Google Scholar 

  • Perumalla AVS, Hettiarachchy NS (2011) Green tea and grape seed extracts – potential applications in food safety and quality. Food Res Int 44:827–839

    Article  CAS  Google Scholar 

  • Playfair J (2004) Living with germs in health and disease. Oxford University Press, Oxford

    Google Scholar 

  • Prabuseenivasan S, Jayakumar M, Ignacimuthu S (2006) In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med 6:39

    Article  Google Scholar 

  • Puupponen-Pimia R, Nohynek L, Meier C, Kahkonen M, Heinonen M, Hopia A, Oksman-Caldentey KM (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 90:494–507

    Article  CAS  Google Scholar 

  • Rai D, Singh JK, Roy N, Panda D (2008) Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 410:147–155

    Article  CAS  Google Scholar 

  • Roth GN, Chandra A, Nair MG (1998) Novel bioactivities of Curcuma longa constituents. J Nat Prod 61:542–545

    Article  CAS  Google Scholar 

  • Samman S, Lyons Wall PM, Cook NC (1998) Flavonoids and coronary heart disease: dietary perspectives. In: Rice Evans CA, Packer L (eds) Flavonoids in health and disease. Marcel Dekker, New York, pp 469–482

    Google Scholar 

  • Shahidi F, Naczk M (1995) Food phenolics: Sources, chemistry, effects, applications. Technomic Publishing Company Inc., Lancaster

    Google Scholar 

  • Shen T, Wang XN, Lou HX (2009) Natural stilbenes: an overview. Nat Prod Rep 26:916–935

    Article  CAS  Google Scholar 

  • Shimamura T, Zhao WH, Hu ZQ (2007) Mechanism of action and potential for use of tea catechin as an anti-infective agent. Antiinfect Agents Med Chem 6:57–62

    Article  CAS  Google Scholar 

  • Silván JM, Mingo E, Hidalgo M, de Pascual-Teresa S, Carrascosa AV, Martinez-Rodriguez AJ (2013) Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp. Food Control 29:25–31

    Article  Google Scholar 

  • Sivarooban T, Hettiarachchy NS, Johnson MG (2007) Inhibition of Listeria monocytogenes using nisin with grape seed extract on turkey frankfurters stored at 4 and 10C. J Food Prot 70:1017–1020

    Article  CAS  Google Scholar 

  • Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26:118–122

    Article  CAS  Google Scholar 

  • Sofos JN, Geornaras I (2010) Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in non-intact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci 86(1):2–14

    Article  Google Scholar 

  • Spann CT, Tutrone WD, Weinberg JM, Scheinfeld N, Ross B (2003) Topical antibacterial agents for wound care: a primer. Dermatol Surg 29:620−626

    Google Scholar 

  • Tagurt T, Tanaka T, Kouno I (2004) Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol Pharm Bull 27:1965–1969

    Article  Google Scholar 

  • Taylor PW, Hamilton-Miller JM, Stapleton PD (2005) Antimicrobial properties of green tea catechins. Food Sci Technol Bull 2:71–81

    Google Scholar 

  • Toda M, Okubo S, Hara Y, Shinamura T (1991) Antibacterial and bactericidal activities of tea extracts and catechins against methicillin-resistant Staphylococcus aureus. Jpn J Bacteriol 46:839–845

    Article  CAS  Google Scholar 

  • Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, Saija A, Mazzanti G, Bisignano G (2005) Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 49:2474–2478

    Article  CAS  Google Scholar 

  • Tsigarida E, Skandamis P, Nychas GJ (2000) Behaviour of Listeria monocytogenes and autochthonous flora on meat stored under aerobic, vacuum and modified atmosphere packaging conditions with or without the presence of oregano essential oil at 5 °C. J Appl Microbiol 89:901–909

    Article  CAS  Google Scholar 

  • Van Loo EJ, Babu D, Crandall PG, Ricke SC (2012) Screening of commercial and pecan shell-extracted liquid smoke agents as natural antimicrobials against foodborne pathogens. J Food Prot 75(6):1148–1152

    Article  Google Scholar 

  • Van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, RSS F, Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer Academic Publishers, Dordrecht, pp 521–574

    Chapter  Google Scholar 

  • Vaquero MJR, Alberto MR, Nadra MCA (2007) Influence of phenolic compounds from wines on the growth of Listeria monocytogenes. Food Control 18:587–593

    Article  Google Scholar 

  • Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int 2013:14, Article ID 963248

    Article  Google Scholar 

  • Wang H, Yang YJ, Qian HY, Zhang Q, Xu H, Li JJ (2012) Resveratrol in cardiovascular disease: what is known from current research? Heart Fail Rev 17(3):437–448

    Article  CAS  Google Scholar 

  • Xia EQ, Deng GF, Guo YJ, Li HB (2010) Biological activities of polyphenols from grapes – a review. Int J Mol Sci 11(2):622–646

    Article  CAS  Google Scholar 

  • Yu HH, Kim KJ, Cha JD, Kim HK, Lee YE, Choi NY, You YO (2005) Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin- resistant Staphylococcus aureus. J Med Food 8(4):454–461

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, LLC

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babu, D., Kushwaha, K., Sehgal, S., Juneja, V.K. (2017). Antimicrobials of Plant Origin. In: Juneja, V., Dwivedi, H., Sofos, J. (eds) Microbial Control and Food Preservation. Food Microbiology and Food Safety(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7556-3_5

Download citation

Publish with us

Policies and ethics