Skip to main content

Polarized Human Retinal Pigment Epithelium Exhibits Distinct Surface Proteome on Apical and Basal Plasma Membranes

  • Protocol
  • First Online:
Book cover The Surfaceome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1722))

Abstract

Surface proteins localized on the apical and basal plasma membranes are required for a cell to sense its environment and relay changes in ionic, cytokine, chemokine, and hormone levels to the inside of the cell. In a polarized cell, surface proteins are differentially localized on the apical or the basolateral sides of the cell. The retinal pigment epithelium (RPE) is an example of a polarized cell that performs a variety of functions that are dependent on its polarized state including trafficking of ions, fluid, and metabolites across the RPE monolayer. These functions are absolutely crucial for maintaining the health and integrity of adjacent photoreceptors, the photosensitive cells of the retina. Here we present a series of approaches to identify and validate the polarization state of cultured primary human RPE cells using immunostaining for RPE apical/basolateral markers, polarized cytokine secretion, electrophysiology, fluid transport, phagocytosis, and identification of plasma membrane proteins through cell surface capturing technology. These approaches are currently being used to validate the polarized state and the epithelial phenotype of human induced pluripotent stem (iPS) cell derived RPE cells. This work provides the basis for developing an autologous cell therapy for age-related macular degeneration using patient specific iPS cell derived RPE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881

    Article  CAS  PubMed  Google Scholar 

  2. Sparrow JR, Hicks D, Hamel CP (2010) The retinal pigment epithelium in health and disease. Curr Mol Med 10(9):802–823

    Article  CAS  PubMed  Google Scholar 

  3. Chiba C (2014) The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res 123:107–114

    Article  CAS  PubMed  Google Scholar 

  4. Reichhart N, Strauss O (2014) Ion channels and transporters of the retinal pigment epithelium. Exp Eye Res 126:27–37

    Article  CAS  PubMed  Google Scholar 

  5. Lehmann GL, Benedicto I, Philp NJ, Rodriguez-Boulan E (2014) Plasma membrane protein polarity and trafficking in RPE cells: past, present and future. Exp Eye Res 126:5–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kay P, Yang YC, Paraoan L (2013) Directional protein secretion by the retinal pigment epithelium: roles in retinal health and the development of age-related macular degeneration. J Cell Mol Med 17(7):833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maminishkis A, Chen S, Jalickee S, Banzon T, Shi G, Wang FE et al (2006) Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci 47(8):3612–3624

    Article  PubMed  PubMed Central  Google Scholar 

  8. Maminishkis A, Miller SS (2010) Experimental models for study of retinal pigment epithelial physiology and pathophysiology. J Vis Exp 45:2032

    Google Scholar 

  9. Miyagishima KJ, Wan Q, Corneo B, Sharma R, Lotfi MR, Boles NC et al (2016) In pursuit of authenticity: induced pluripotent stem cell-derived retinal pigment epithelium for clinical applications. Stem Cells Transl Med 5(11):1562–1574

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kivela T, Jaaskelainen J, Vaheri A, Carpen O (2000) Ezrin, a membrane-organizing protein, as a polarization marker of the retinal pigment epithelium in vertebrates. Cell Tissue Res 301(2):217–223

    Article  CAS  PubMed  Google Scholar 

  11. Braisted JE, Essman TF, Raymond PA (1994) Selective regeneration of photoreceptors in goldfish retina. Development 120(9):2409–2419

    CAS  PubMed  Google Scholar 

  12. Baron R, Joseph RD, Owen T, Tennyson J, Miller S, Ballester GE (1991) Imaging Jupiter’s aurorae from H3+ emissions in the 3-4 micrometers band. Nature 353:539–542

    Article  CAS  PubMed  Google Scholar 

  13. Sonoda S, Sreekumar PG, Kase S, Spee C, Ryan SJ, Kannan R, Hinton DR (2010) Attainment of polarity promotes growth factor secretion by retinal pigment epithelial cells: relevance to age-related macular degeneration. Aging (Albany NY) 2(1):28–42

    Article  CAS  Google Scholar 

  14. Maminishkis A, Jalickee S, Blaug SA, Rymer J, Yerxa BR, Peterson WM, Miller SS (2002) The P2Y(2) receptor agonist INS37217 stimulates RPE fluid transport in vitro and retinal reattachment in rat. Invest Ophthalmol Vis Sci 43(11):3555–3566

    PubMed  Google Scholar 

  15. Peterson WM, Meggyesy C, Yu K, Miller SS (1997) Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci 17(7):2324–2337

    CAS  PubMed  Google Scholar 

  16. Kevany BM, Palczewski K (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 25(1):8–15

    Article  CAS  Google Scholar 

  17. Li R, Maminishkis A, Banzon T, Wan Q, Jalickee S, Chen S, Miller SS (2009) IFN{gamma} regulates retinal pigment epithelial fluid transport. Am J Physiol Cell Physiol 297(6):C1452–C1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li R, Wen R, Banzon T, Maminishkis A, Miller SS (2011) CNTF mediates neurotrophic factor secretion and fluid absorption in human retinal pigment epithelium. PLoS One 6(9):e23148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mazzoni F, Safa H, Finnemann SC (2014) Understanding photoreceptor outer segment phagocytosis: use and utility of RPE cells in culture. Exp Eye Res 126:51–60

    Article  CAS  PubMed  Google Scholar 

  20. Boheler KR, Bhattacharya S, Kropp EM, Chuppa S, Riordon DR, Bausch-Fluck D et al (2014) A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes, and drug targets. Stem Cell Rep 3(1):185–203

    Article  CAS  Google Scholar 

  21. Doerr A (2009) Snapshots of the cell surface. Nat Methods 6(6):401–401

    Article  CAS  Google Scholar 

  22. Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27(4):378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strunnikova NV, Maminishkis A, Barb JJ, Wang F, Zhi C, Sergeev Y et al (2010) Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum Mol Genet 19(12):2468–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Surace EM, Angeletti B, Ballabio A, Marigo V (2000) Expression pattern of the ocular albinism type 1 (Oa1) gene in the murine retinal pigment epithelium. Invest Ophthalmol Vis Sci 41(13):4333–4337

    CAS  PubMed  Google Scholar 

  25. Bachner D, Schroder D, Gross G (2002) mRNA expression of the murine glycoprotein (transmembrane) nmb (Gpnmb) gene is linked to the developing retinal pigment epithelium and iris. Brain Res Gene Expr Patterns 1(3–4):159–165

    Article  CAS  PubMed  Google Scholar 

  26. Adijanto J, Banzon T, Jalickee S, Wang NS, Miller SS (2009) CO2-induced ion and fluid transport in human retinal pigment epithelium. J Gen Physiol 133(6):603–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Young A, Powelson EB, Whitney IE, Raven MA, Nusinowitz S, Jiang M et al (2008) Involvement of OA1, an intracellular GPCR, and G alpha i3, its binding protein, in melanosomal biogenesis and optic pathway formation. Invest Ophthalmol Vis Sci 49(7):3245–3252

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stamer WD, Bok D, Hu J, Jaffe GJ, McKay BS (2003) Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement. Invest Ophthalmol Vis Sci 44(6):2803–2808

    Article  PubMed  Google Scholar 

  29. Lambooij AC, van Wely KH, Lindenbergh-Kortleve DJ, Kuijpers RW, Kliffen M, Mooy CM (2003) Insulin-like growth factor-I and its receptor in neovascular age-related macular degeneration. Invest Ophthalmol Vis Sci 44(5):2192–2198

    Article  PubMed  Google Scholar 

  30. Chen YY, Lu QJ, Lu QX, Wang NL (2011) Gene expression profile changes caused by the dysfunction of Mer during retinal pigment epithelium phagocytosis. Chin Med J 124(8):1145–1155

    CAS  PubMed  Google Scholar 

  31. Mandal MN, Vasireddy V, Jablonski MM, Wang X, Heckenlively JR, Hughes BA, Reddy GB, Ayyagari R (2006) Spatial and temporal expression of MFRP and its interaction with CTRP5. Invest Ophthalmol Vis Sci 47(12):5514–5521

    Article  PubMed  Google Scholar 

  32. Lin H, Kenyon E, Miller SS (1992) Na-dependent pHi regulatory mechanisms in native human retinal pigment epithelium. Invest Ophthalmol Vis Sci 33(13):3528–3538

    CAS  PubMed  Google Scholar 

  33. Hollborn M, Petto C, Steffen A, Trettner S, Bendig A, Wiedemann P, Bringmann A, Kohen L (2009) Effects of thrombin on RPE cells are mediated by transactivation of growth factor receptors. Invest Ophthalmol Vis Sci 50(9):4452–4459

    Article  PubMed  Google Scholar 

  34. Sugasawa K, Deguchi J, Okami T, Yamamoto A, Omori K, Uyama M, Tashiro Y (1994) Immunocytochemical analyses of distributions of Na, K-ATPase and GLUT1, insulin and transferrin receptors in the developing retinal pigment epithelial cells. Cell Struct Funct 19(1):21–28

    Article  CAS  PubMed  Google Scholar 

  35. Gundry RL, Riordon DR, Tarasova Y, Chuppa S, Bhattacharya S, Juhasz O et al (2012) A cell surfaceome map for immunophenotyping and sorting pluripotent stem cells. Mol Cell Proteomics 11(8):303–316

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, Van Eyk JE (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol Chapter 10:Unit10.25

    Google Scholar 

  37. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467

    Article  CAS  PubMed  Google Scholar 

  38. Wenger CD, Coon JJ (2013) A proteomics search algorithm specifically designed for high-resolution tandem mass spectra. J Proteome Res 12(3):1377–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by National Eye Institute Intramural funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Bharti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khristov, V., Wan, Q., Sharma, R., Lotfi, M., Maminishkis, A., Bharti, K. (2018). Polarized Human Retinal Pigment Epithelium Exhibits Distinct Surface Proteome on Apical and Basal Plasma Membranes. In: Boheler, K., Gundry, R. (eds) The Surfaceome. Methods in Molecular Biology, vol 1722. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7553-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7553-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7551-8

  • Online ISBN: 978-1-4939-7553-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics