Skip to main content

Quantitative Peptidomics with Isotopic and Isobaric Tags

  • Protocol
  • First Online:
Peptidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1719))

Abstract

In differential peptidomics, peptide profiles are compared between biological samples and the resulting expression levels are correlated to a phenotype of interest. This, in turn, allows us insight into how peptides may affect the phenotype of interest. In quantitative differential peptidomics, both label-based and label-free techniques are often employed. Label-based techniques have several advantages over label-free methods, primarily that labels allow for various samples to be pooled prior to liquid chromatography-mass spectrometry (LC-MS) analysis, reducing between-run variation. Here, we detail a method for performing quantitative peptidomics using stable amine-binding isotopic and isobaric tags.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fricker LD (2007) Neuropeptidomics to study peptide processing in animal models of obesity. Endocrinology 148:4185–4190. https://doi.org/10.1210/en.2007-0123

    Article  CAS  PubMed  Google Scholar 

  2. Wardman JH, Zhang X, Gagnon S et al (2010) Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics. J Neurochem 114:215–225. https://doi.org/10.1111/j.1471-4159.2010.06760.x

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller LK, Hou X, Rodriguiz RM et al (2011) Mice deficient in endothelin-converting enzyme-2 exhibit abnormal responses to morphine and altered peptide levels in the spinal cord. J Neurochem 119:1074–1085. https://doi.org/10.1111/j.1471-4159.2011.07513.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brockmann A, Annangudi SP, T a R et al (2009) Quantitative peptidomics reveal brain peptide signatures of behavior. Proc Natl Acad Sci U S A 106:2383–2388. https://doi.org/10.1073/pnas.0813021106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen R, Hui L, Cape SS et al (2010) Comparative neuropeptidomic analysis of food intake via a multi-faceted mass spectrometric approach. ACS Chem Neurosci 1:204–214. https://doi.org/10.1021/cn900028s

    Article  CAS  PubMed  Google Scholar 

  6. Sterkel M, Urlaub H, Rivera-Pomar R, Ons S (2011) Functional proteomics of neuropeptidome dynamics during the feeding process of Rhodnius prolixus. J Proteome Res 10:3363–3371. https://doi.org/10.1021/pr2001012

    Article  CAS  PubMed  Google Scholar 

  7. Che F-Y, Fricker LD (2005) Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags. J Mass Spectrom 40:238–249. https://doi.org/10.1002/jms.743

    Article  CAS  PubMed  Google Scholar 

  8. Thompson A, Schäfer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904

    Article  CAS  PubMed  Google Scholar 

  9. Romanova EV, Dowd SE, Sweedler JV (2013) Quantitation of endogenous peptides using mass spectrometry based methods. Curr Opin Chem Biol 17:801–808. https://doi.org/10.1016/j.cbpa.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  10. Fricker LD (2015) Limitations of mass spectrometry-based peptidomic approaches. J Am Soc Mass Spectrom 26:1981. https://doi.org/10.1007/s13361-015-1231-x

    Article  CAS  PubMed  Google Scholar 

  11. Verdonck R, De Haes W, Cardoen D et al (2016) Fast and reliable quantitative peptidomics with labelpepmatch. J Proteome Res 15:1080–1089. https://doi.org/10.1021/acs.jproteome.5b00845

    Article  CAS  PubMed  Google Scholar 

  12. Maes E, Hadiwikarta WW, Mertens I et al (2016) CONSTANd: a normalization method for isobaric labeled spectra by constrained optimization. Mol Cell Proteomics 15(8):2779–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maes E, Valkenborg D, Baggerman G et al (2015) Determination of variation parameters as a crucial step in designing TMT-based clinical proteomics experiments. PLoS One 10:e0120115. https://doi.org/10.1371/journal.pone.0120115

    Article  PubMed  PubMed Central  Google Scholar 

  14. McAlister GC, Nusinow DP, Jedrychowski MP et al (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86:7150–7158. https://doi.org/10.1021/ac502040v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wühr M, Haas W, McAlister GC et al (2012) Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster. Anal Chem 84:9214–9221. https://doi.org/10.1021/ac301962s

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ma B, Zhang K, Hendrie C et al (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2337–2342. https://doi.org/10.1002/rcm.1196

    Article  CAS  PubMed  Google Scholar 

  17. Han X, He L, Xin L et al (2011) PeaksPTM: mass spectrometry-based identification of peptides with unspecified modifications. J Proteome Res 10:2930–2936. https://doi.org/10.1021/pr200153k

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Xin L, Shan B et al (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11:M111.010587. https://doi.org/10.1074/mcp.M111.010587

    Article  PubMed  Google Scholar 

  19. Han Y, Ma B, Zhang K (2005) SPIDER: software for protein identification from sequence tags with de novo sequencing error. J Bioinforma Comput Biol 3:697

    Article  CAS  Google Scholar 

  20. R Core Team (2016) R: a language and environment for statistical computing. Vienna, Austria. http://www.r-project.org/. Accessed 24 Oct 2016

  21. Shadforth IP, Dunkley TP, Lilley KS, Bessant C (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics 6:145. https://doi.org/10.1186/1471-2164-6-145

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morano C, Zhang X, Fricker LD (2008) Multiple isotopic labels for quantitative mass spectrometry. Anal Bioanal Chem 80:9298–9309

    Article  CAS  Google Scholar 

  23. Chiva C, Sabidó E (2014) HCD-only fragmentation method balances peptide identification and quantitation of TMT-labeled samples in hybrid linear ion trap/orbitrap mass spectrometers. J Proteome 96:263–270. https://doi.org/10.1016/j.jprot.2013.11.013

    Article  CAS  Google Scholar 

  24. Gelman JS, Wardman J, Bhat VB et al (2012) Quantitative peptidomics to measure neuropeptide levels in animal models relevant to psychiatric disorders. In: Kobeissy FH (ed) Methods Mol Biol. Humana Press, pp 487–503

    Google Scholar 

  25. Gelman JS, Dasgupta S, Berezniuk I, Fricker LD (2013) Analysis of peptides secreted from cultured mouse brain tissue. Biochim Biophys Acta 1834:2408–2417. https://doi.org/10.1016/j.bbapap.2013.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wardman J, Fricker LD (2011) Quantitative peptidomics of mice lacking peptide-processing enzymes. In: Mbikay M, Seidah NG (eds) Methods Mol Biol. Humana Press, Totowa, pp 191–206

    Google Scholar 

  27. Vaudel M, Burkhart JM, Zahedi RP et al (2015) PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol 33:22–24. https://doi.org/10.1038/nbt.3109

    Article  CAS  PubMed  Google Scholar 

  28. Rost HL, Sachsenberg T, Aiche S et al (2016) OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods 13:741–748. https://doi.org/10.1038/nmeth.3959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

W.D.H. is a research fellow of the FWO-Flanders. The authors wish to thank the FWO (G069713 and G095915N) and KU Leuven internal funds (C14/15/049) and the European Research Council (ERC grant 586 340318) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliane Schoofs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boonen, K. et al. (2018). Quantitative Peptidomics with Isotopic and Isobaric Tags. In: Schrader, M., Fricker, L. (eds) Peptidomics. Methods in Molecular Biology, vol 1719. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7537-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7537-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7536-5

  • Online ISBN: 978-1-4939-7537-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics