Skip to main content

Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer

  • Protocol
  • First Online:
Glucose Transport

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1713))

Abstract

Glucose is metabolized through anaerobic glycolysis and aerobic oxidative phosphorylation (OXPHOS). Perturbing glucose uptake and its subsequent metabolism can alter both glycolytic and OXPHOS pathways and consequently lactate and/or oxygen consumption. Production and secretion of lactate, as a consequence of glycolysis, leads to acidification of the extracellular medium. Molecular oxygen is the final electron acceptor in the electron transport chain, facilitating oxidative phosphorylation of ADP to ATP. The alterations in extracellular acidification and/or oxygen consumption can thus be used as indirect readouts of glucose metabolism and assessing the impact of inhibiting glucose transport through specific glucose transporters (GLUTs). The Seahorse bioenergetics analyzer can measure both the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). The proposed methodology affords a robust, high-throughput method to screen for GLUT inhibition in cells engineered to express specific GLUTs, providing live cell read-outs upon GLUT inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Metallo CM, Vander Heiden MG (2013) Understanding metabolic regulation and its influence on cell physiology. Mol Cell 49(3):388–398. https://doi.org/10.1016/j.molcel.2013.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manolescu AR, Witkowska K, Kinnaird A, Cessford T, Cheeseman C (2007) Facilitated hexose transporters: new perspectives on form and function. Physiology (Bethesda) 22:234–240. https://doi.org/10.1152/physiol.00011.2007

    Article  CAS  Google Scholar 

  4. Thorens B, Mueckler M (2010) Glucose transporters in the 21st century. Am J Phys Endocrinol Metab 298(2):E141–E145. https://doi.org/10.1152/ajpendo.00712.2009

    Article  CAS  Google Scholar 

  5. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N (2014) Crystal structure of the human glucose transporter GLUT1. Nature 510(7503):121–125. https://doi.org/10.1038/nature13306

    Article  CAS  PubMed  Google Scholar 

  6. Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3(4):267–277. https://doi.org/10.1038/nrm782

    Article  CAS  PubMed  Google Scholar 

  7. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202(3):654–662. https://doi.org/10.1002/jcp.20166

    Article  CAS  PubMed  Google Scholar 

  8. McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST, Shanmugam M (2012) Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporter-directed therapy. Blood 119(20):4686–4697. https://doi.org/10.1182/blood-2011-09-377846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Divakaruni AS, Paradyse A, Ferrick DA, Murphy AN, Jastroch M (2014) Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol 547:309–354. https://doi.org/10.1016/B978-0-12-801415-8.00016-3

    Article  CAS  PubMed  Google Scholar 

  10. Mookerjee SA, Goncalves RL, Gerencser AA, Nicholls DG, Brand MD (2015) The contributions of respiration and glycolysis to extracellular acid production. Biochim Biophys Acta 1847(2):171–181. https://doi.org/10.1016/j.bbabio.2014.10.005

    Article  CAS  PubMed  Google Scholar 

  11. Afzal I, Cunningham P, Naftalin RJ (2002) Interactions of ATP, oestradiol, genistein and the anti-oestrogens, faslodex (ICI 182780) and tamoxifen, with the human erythrocyte glucose transporter, GLUT1. Biochem J 365(Pt 3):707–719. https://doi.org/10.1042/BJ20011624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mishra RK, Wei C, Hresko RC, Bajpai R, Heitmeier M, Matulis SM, Nooka AK, Rosen ST, Hruz PW, Schiltz GE, Shanmugam M (2015) In silico modeling-based identification of glucose transporter 4 (GLUT4)-selective inhibitors for cancer therapy. J Biol Chem 290(23):14441–14453. https://doi.org/10.1074/jbc.M114.628826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei C, Bajpai R, Sharma H, Heitmeier M, Jain AD, Matulis SM, Nooka AK, Mishra RK, Hruz PW, Schiltz GE, Shanmugam M (2017) Development of GLUT4-selective antagonists for multiple myeloma therapy. Eur J Med Chem 20;139:573–586. https://doi.org/10.1016/j.ejmech.2017.08.029

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala Shanmugam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wei, C., Heitmeier, M., Hruz, P.W., Shanmugam, M. (2018). Evaluating the Efficacy of GLUT Inhibitors Using a Seahorse Extracellular Flux Analyzer. In: Lindkvist-Petersson, K., Hansen, J. (eds) Glucose Transport. Methods in Molecular Biology, vol 1713. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7507-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7507-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7506-8

  • Online ISBN: 978-1-4939-7507-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics