Skip to main content

Computational Modeling of the Hsp90 Interactions with Cochaperones and Small-Molecule Inhibitors

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

Allosteric interactions of the molecular chaperone Hsp90 with a diverse array of cochaperones and client proteins, such as protein kinases and transcription factors, allow for efficient molecular communication in signal transduction networks. Deregulation of pathways involving these proteins is commonly associated with cancer pathologies and allosteric inhibition of oncogenic clients by targeting Hsp90 provides a powerful therapeutic strategy in cancer research. We review several validated computational approaches and tools used in the studies of the Hsp90 interactions with proteins and small molecules. These methods include experimentally guided docking to predict Hs90-protein interactions, molecular and binding free energy simulations to analyze Hsp90 binding with small molecules, and structure-based network modeling to evaluate allosteric interactions and communications in the Hsp90 regulatory complexes. Through the lens of allosteric-centric view on Hsp90 function and regulation, we discuss newly emerging computational tools that link protein structure modeling with biophysical simulations and network-based systems biology approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pearl LH, Prodromou C (2001) Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv Protein Chem 59:157–186

    Article  CAS  PubMed  Google Scholar 

  2. Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772

    Article  PubMed  Google Scholar 

  3. Prodromou C (2016) Mechanisms of Hsp90 regulation. Biochem J 473:2439–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pearl LH (2016) Review: the HSP90 molecular chaperone-an enigmatic ATPase. Biopolymers 105:594–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131:121–135

    Article  CAS  PubMed  Google Scholar 

  6. Zhao R, Houry WA (2007) Molecular interaction network of the Hsp90 chaperone system. Adv Exp Med Biol 594:27–36

    Article  PubMed  Google Scholar 

  7. Pearl LH (2005) Hsp90 and Cdc37 -- a chaperone cancer conspiracy. Curr Opin Genet Dev 15:55–61

    Article  CAS  PubMed  Google Scholar 

  8. Taipale M, Jarosz DF, Lindquist S (2010) Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  9. Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI et al (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prodromou C (2012) The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta 1823:614–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by cochaperones. Biochim Biophys Acta 1823:624–635

    Article  CAS  PubMed  Google Scholar 

  12. Röhl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38:253–262

    Article  PubMed  Google Scholar 

  13. Verma S, Goyal S, Jamal S, Singh A, Grover A (2016) Hsp90: friends, clients and natural foes. Biochimie 127:227–240

    Article  CAS  PubMed  Google Scholar 

  14. Theodoraki MA, Caplan AJ (2012) Quality control and fate determination of Hsp90 client proteins. Biochim Biophys Acta 1823:683–688

    Article  CAS  PubMed  Google Scholar 

  15. Graf C, Stankiewicz M, Kramer G, Mayer MP (2009) Spatially and kinetically resolved changes in the conformational dynamics of the Hsp90 chaperone machine. EMBO J 28:602–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mickler M, Hessling M, Ratzke C, Buchner J, Hugel T (2009) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat Struct Mol Biol 16:281–286

    Article  CAS  PubMed  Google Scholar 

  17. Hessling M, Richter K, Buchner J (2009) Dissection of the ATP-induced conformational cycle of the molecular chaperone Hsp90. Nat Struct Mol Biol 16:287–293

    Article  CAS  PubMed  Google Scholar 

  18. Ratzke C, Nguyen MN, Mayer MP, Hugel T (2012) From a ratchet mechanism to random fluctuations evolution of Hsp90’s mechanochemical cycle. J Mol Biol 423:462–471

    Article  CAS  PubMed  Google Scholar 

  19. Ratzke C, Berkemeier F, Hugel T (2012) Heat shock protein 90’s mechanochemical cycle is dominated by thermal fluctuations. Proc Natl Acad Sci U S A 109:161–166

    Article  CAS  PubMed  Google Scholar 

  20. Richter K, Walter S, Buchner J (2004) The co-chaperone Sba1 connects the ATPase reaction of Hsp90 to the progression of the chaperone cycle. J Mol Biol 342:1403–1413

    Article  CAS  PubMed  Google Scholar 

  21. McLaughlin SH, Sobott F, Yao ZP, Zhang W, Nielsen PR, Grossmann JG et al (2006) The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins. J Mol Biol 356:746–758

    Article  CAS  PubMed  Google Scholar 

  22. Lee CT, Graf C, Mayer FJ, Richter SM, Mayer MP (2012) Dynamics of the regulation of Hsp90 by the co-chaperone Sti1. EMBO J 31:1518–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mandal AK, Lee P, Chen JA, Nillegoda N, Heller A, DiStasio S et al (2007) Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation. J Cell Biol 176:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Richter K, Reinstein J, Buchner J (2013) Integration of the accelerator Aha1 in the Hsp90 cochaperone cycle. Nat Struct Mol Biol 20:326–331

    Article  PubMed  Google Scholar 

  25. Kadota Y, Shirasu K, Guerois R (2010) NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem Sci 35:199–207

    Article  CAS  PubMed  Google Scholar 

  26. Southworth DR, Agard DA (2011) Client-loading conformation of the Hsp90 molecular chaperone revealed in the cryo-EM structure of the human Hsp90:hop complex. Mol Cell 42:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Genest O, Reidy M, Street TO, Hoskins JR, Camberg JL, Agard DA et al (2013) Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast. Mol Cell 49:464–473

    Article  CAS  PubMed  Google Scholar 

  28. Tsai CJ, Sol AD, Nussinov R (2009) Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol BioSyst 5:207–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Colombo G, Morra G, Meli M, Verkhivker G (2008) Understanding ligand-based modulation of the Hsp90 molecular chaperone dynamics at atomic resolution. Proc Natl Acad Sci U S A 105:7976–7981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morra G, Verkhivker G, Colombo G (2009) Modeling signal propagation mechanisms and ligand-based conformational dynamics of the Hsp90 molecular chaperone full length dimer. PLoS Comput Biol 5:e1000323

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dixit A, Verkhivker GM (2012) Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics. PLoS One 7:e37605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Blacklock K, Verkhivker G (2013) Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study. PLoS One 8:e71936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blacklock K, Verkhivker G (2014) Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling. PLoS One 9:e86547

    Article  PubMed  PubMed Central  Google Scholar 

  34. Blacklock K, Verkhivker G (2013) Experimentally guided structural modeling and dynamics analysis of Hsp90-p53 interactions: allosteric regulation of the Hsp90 chaperone by a client protein. J Chem Inf Model 53:2962–29784

    Article  CAS  PubMed  Google Scholar 

  35. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737

    Article  CAS  PubMed  Google Scholar 

  36. de Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897

    Article  PubMed  Google Scholar 

  37. Brinda KV, Vishveshwara S (2005) A network representation of protein structures: implications for protein stability. Biophys J 89:4159–4170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vijayabaskar MS, Vishveshwara S (2010) Interaction energy based protein structure networks. Biophys J 99:3704–3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bhattacharyya M, Vishveshwara S (2011) Probing the allosteric mechanism in pyrrolysyl-tRNA synthetase using energy-weighted network formalism. Biochemistry 50:6225–6236

    Article  CAS  PubMed  Google Scholar 

  40. Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA:protein complexes. Proc Natl Acad Sci U S A 106:6620–6625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blacklock K, Verkhivker GM (2014) Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications. PLoS Comput Biol 10:e1003679

    Article  PubMed  PubMed Central  Google Scholar 

  42. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butler LM, Ferraldeschi R, Armstrong HK, Centenera MM, Workman P (2015) Maximizing the therapeutic potential of HSP90 inhibitors. Mol Cancer Res 13:1445–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    Article  CAS  PubMed  Google Scholar 

  45. Verma S, Singh A, Mishra A (2012) Dual inhibition of chaperoning process by taxifolin: molecular dynamics simulation study. J Mol Graph Model 37:27–38

    Article  CAS  PubMed  Google Scholar 

  46. Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ, Ruiz A et al (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7:115–122

    Article  CAS  PubMed  Google Scholar 

  47. Barta TE, Veal JM, Rice JW, Partridge JM, Fadden RP, Ma W et al (2008) Discovery of benzamide tetrahydro-4H-carbazol-4-ones as novel small molecule inhibitors of Hsp90. Bioorg Med Chem Lett 18:3517–3521

    Article  CAS  PubMed  Google Scholar 

  48. Kung PP, Funk L, Meng J, Collins M, Zhou JZ, Johnson MC et al (2008) Dihydroxylphenyl amides as inhibitors of the Hsp90 molecular chaperone. Bioorg Med Chem Lett 18:6273–6278

    Article  CAS  PubMed  Google Scholar 

  49. Hong TJ, Park H, Kim YJ, Jeong JH, Hahn JS (2009) Identification of new Hsp90 inhibitors by structure-based virtual screening. Bioorg Med Chem Lett 19:4839–4842

    Article  CAS  PubMed  Google Scholar 

  50. Lauria A, Abbate I, Gentile C, Angileri F, Martorana A, Almerico AM (2013) Synthesis and biological activities of a new class of heat shock protein 90 inhibitors, designed by energy-based pharmacophore virtual screening. J Med Chem 56:3424–3428

    Article  CAS  PubMed  Google Scholar 

  51. Zhang T, Hamza A, Cao X, Wang B, Yu S, Zhan CG et al (2008) A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 7:162–170

    Article  CAS  PubMed  Google Scholar 

  52. Tomaselli S, Meli M, Plescia J, Zetta L, Altieri DC, Colombo G, Ragona L (2010) Combined in silico and experimental approach for drug design: the binding mode of peptidic and non-peptidic inhibitors to hsp90 N-terminal domain. Chem Biol Drug Des 76:382–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yi CH, Chen JZ, Shi SH, GD H, Zhang QG (2010) A computational analysis of pyrazole-based inhibitors binding to Hsp90 using molecular dynamics simulation and the MM-GBSA method. Mol Simul 36:454–460

    Article  CAS  Google Scholar 

  54. Marcu MG, Chadli A, Bouhouche I, Catelli M (2000) Neckers LM (2000) the heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186

    Article  CAS  PubMed  Google Scholar 

  55. Garnier C, Lafitte D, Tsvetkov PO, Barbier P, Leclerc-Devin J, Millot JM et al (2002) Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J Biol Chem 277:12208–12214

    Article  CAS  PubMed  Google Scholar 

  56. Sgobba M, Forestiero R, Degliesposti G, Rastelli G (2010) Exploring the binding site of C-terminal hsp90 inhibitors. J Chem Inf Model 50:1522–1528

    Article  CAS  PubMed  Google Scholar 

  57. Moroni E, Zhao H, Blagg BS, Colombo G (2014) Exploiting conformational dynamics in drug discovery: design of C-terminal inhibitors of Hsp90 with improved activities. J Chem Inf Model 54:195–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao H, Garg G, Zhao J, Moroni E, Girgis A, Franco LS et al (2015) Design, synthesis and biological evaluation of biphenylamide derivatives as Hsp90 C-terminal inhibitors. Eur J Med Chem 89:442–466

    Article  CAS  PubMed  Google Scholar 

  59. Sattin S, Tao J, Vettoretti G, Moroni E, Pennati M, Lopergolo A et al (2015) Activation of Hsp90 enzymatic activity and conformational dynamics through rationally designed allosteric ligands. Chemistry 21:13598–13608

    Article  CAS  PubMed  Google Scholar 

  60. Morra G, Neves MA, Plescia CJ, Tsustsumi S, Neckers L, Verkhivker G et al (2010) Dynamics-based discovery of allosteric inhibitors: selection of new ligands for the C-terminal domain of Hsp90. J Chem Theory Comput 6:2978–2989

    Article  CAS  PubMed  Google Scholar 

  61. Matts RL, Brandt GE, Lu Y, Dixit A, Mollapour M, Wang S et al (2011) A systematic protocol for the characterization of Hsp90 modulators. Bioorg Med Chem 19:684–692

    Article  CAS  PubMed  Google Scholar 

  62. Matts RL, Dixit A, Peterson LB, Sun L, Voruganti S, Kalyanaraman P et al (2011) Elucidation of the Hsp90 C-terminal inhibitor binding site. ACS Chem Biol 6:800–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roy SS, Kapoor M (2016) In silico identification and computational analysis of the nucleotide binding site in the C-terminal domain of Hsp90. J Mol Graph Model 70:253–274

    Article  CAS  PubMed  Google Scholar 

  64. Kumalo HM, Bhakat S, Soliman ME (2015) Heat-shock protein 90 (Hsp90) as anticancer target for drug discovery: an ample computational perspective. Chem Biol Drug Des 86:1131–1160

    Article  CAS  PubMed  Google Scholar 

  65. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hooft RW, Sander C, Vriend G (1996) Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 26:363–376

    Article  CAS  PubMed  Google Scholar 

  67. Hekkelman ML, Te Beek TA, Pettifer SR, Thorne D, Attwood TK, Vriend G (2010) WIWS: a protein structure bioinformatics web service collection. Nucleic Acids Res 38:W719–W723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nielsen JE, Andersen KV, Honig B, Hooft RW, Klebe G, Vriend G et al (1999) Improving macromolecular electrostatics calculations. Protein Eng 12:657–662

    Article  CAS  PubMed  Google Scholar 

  69. Nielsen JE, Vriend G (2001) Optimizing the hydrogen-bond network in Poisson-Boltzmann equation-based pK(a) calculations. Proteins 43:403–412

    Article  CAS  PubMed  Google Scholar 

  70. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, Onufriev A (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res 33:W368–W371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anandakrishnan R, Aguilar B, Onufriev AV (2012) H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Res 40:W537–W541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bashford D, Karplus M (1990) pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry 29:10219–10225

    Article  CAS  PubMed  Google Scholar 

  73. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fiser A, Sali A (2003) ModLoop: automated modeling of loops in protein structures. Bioinformatics 19:2500–2501

    Article  CAS  PubMed  Google Scholar 

  75. Fernandez-Fuentes N, Zhai J, Fiser A (2006) ArchPRED: a template based loop structure prediction server. Nucleic Acids Res 34:W173–W176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bhattacharya D, Cheng J (2013) 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 81:119–131

    Article  CAS  PubMed  Google Scholar 

  77. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Vanommeslaeghe K, AD MK Jr (2012) Automation of the CHARMM general force field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52:3144–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vanommeslaeghe K, Raman EP, AD MK Jr (2012) Automation of the CHARMM general force field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52:3155–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32:2359–2368

    Article  CAS  PubMed  Google Scholar 

  81. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for determining atom-centered charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  82. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies and free energies of solvation. J Am Chem Soc 115:9620–9631

    Article  CAS  Google Scholar 

  83. Cieplak P, Cornell WD, Bayly CI, Kollman PA (1995) Application of the multimolecule and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA and proteins. J Comput Chem 16:1357–1377

    Article  CAS  Google Scholar 

  84. Mayne CG, Saam J, Schulten K, Tajkhorshid E, Gumbart JC (2013) Rapid parameterization of small molecules using the force field toolkit. J Comput Chem 34:2757–2770

    Article  CAS  PubMed  Google Scholar 

  85. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  PubMed  Google Scholar 

  86. Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber PYthon parser interface. BMC Res Notes 5:367

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  88. Debiec KT, Cerutti DS, Baker LR, Gronenborn AM, Case DA, Chong LT (2016) Further along the road less traveled: AMBER ff15ipq, an original protein force field built on a self-consistent physical model. J Chem Theory Comput 12:3926–3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY et al (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296

    Article  CAS  PubMed  Google Scholar 

  90. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  PubMed  Google Scholar 

  91. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    Article  CAS  PubMed  Google Scholar 

  92. Sun H, Li Y, Tian S, Xu L, Hou T (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 16:16719–16729

    Article  CAS  PubMed  Google Scholar 

  93. Homeyer N, Gohlke H (2013) FEW: a workflow tool for free energy calculations of ligand binding. J Comput Chem 34:965–973

    Article  CAS  PubMed  Google Scholar 

  94. Vijayabaskar MS, Niranjan V, Vishveshwara S (2011) GraProStr—graphs of protein structures: a tool for constructing the graphs and generating graph parameters for protein structures. Open Bioinform J 5:53–58

    Article  CAS  Google Scholar 

  95. Chakrabarty B, Parekh N (2016) NAPS: network analysis of protein structures. Nucleic Acids Res 44:W375–W382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818

    Article  CAS  PubMed  Google Scholar 

  97. Adamcsek B, Palla G, Farkas IJ, Derényi I, Vicsek T (2006) CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22:1021–1023

    Article  CAS  PubMed  Google Scholar 

  98. Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5:345

    Article  Google Scholar 

  99. Hagberg A, Schult D, Swart P (2008) Exploring network structure, dynamics, and function using NetworkX, p 11–15. In: 7th python in science conference (SciPy 2008). Pasadena

    Google Scholar 

  100. Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99:7821–7826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady M. Verkhivker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Verkhivker, G.M. (2018). Computational Modeling of the Hsp90 Interactions with Cochaperones and Small-Molecule Inhibitors. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics