Skip to main content

Screening Phage-Display Antibody Libraries Using Protein Arrays

  • Protocol
  • First Online:
Phage Display

Abstract

Phage-display technology constitutes a powerful tool for the generation of specific antibodies against a predefined antigen. The main advantages of phage-display technology in comparison to conventional hybridoma-based techniques are: (1) rapid generation time and (2) antibody selection against an unlimited number of molecules (biological or not). However, the main bottleneck with phage-display technology is the validation strategies employed to confirm the greatest number of antibody fragments. The development of new high-throughput (HT) techniques has helped overcome this great limitation. Here, we describe a new method based on an array technology that allows the deposition of hundreds to thousands of phages by micro-contact on a unique nitrocellulose surface. This setup comes in combination with bioinformatic approaches that enables simultaneous affinity screening in a HT format of antibody-displaying phages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith G (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317. https://doi.org/10.1126/science.4001944

    Article  CAS  PubMed  Google Scholar 

  2. Winter G, Griffiths A, Hawkins R, Hoogenboom H (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455. https://doi.org/10.1146/annurev.iy.12.040194.002245

    Article  CAS  PubMed  Google Scholar 

  3. Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147–153. https://doi.org/10.1016/0378-1119(91)90244-6

    Article  CAS  PubMed  Google Scholar 

  4. Hoogenboom H, Griffiths A, Johnson K, Chiswell D, Hudson P, Winter G (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (fab) heavy and light chains. Nucleic Acids Res 19:4133–4137. https://doi.org/10.1093/nar/19.15.4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McCafferty J, Griffiths A, Winter G, Chiswell D (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554. https://doi.org/10.1038/348552a0

    Article  CAS  PubMed  Google Scholar 

  6. McGuinness B, Walter G, FitzGerald K, Schuler P, Mahoney W, Duncan A, Hoogenboom H (1996) Phage diabody repertoires for selection of large numbers of bispecific antibody fragments. Nat Biotechnol 14:1149–1154. https://doi.org/10.1038/nbt0996-1149

    Article  CAS  PubMed  Google Scholar 

  7. Frenzel A, Hust M, Schirrmann T (2013) Expression of recombinant antibodies. Front Immunol 4:217. https://doi.org/10.3389/fimmu.2013.00217

    Article  PubMed  PubMed Central  Google Scholar 

  8. Waldmann T (2003) Immunotherapy: past, present and future. Nat Med 9:269–277. https://doi.org/10.1038/nm0303-269

    Article  CAS  PubMed  Google Scholar 

  9. Skerra APluckthun A (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240:1038–1041. https://doi.org/10.1126/science.3285470

    Article  Google Scholar 

  10. Verma R, Boleti E, George A (1998) Antibody engineering: comparison of bacterial, yeast, insect and mammalian expression systems. J Immunol Methods 216:165–181. https://doi.org/10.1016/s0022-1759(98)00077-5

    Article  CAS  PubMed  Google Scholar 

  11. Eldin P, Pauza M, Hieda Y, Lin G, Murtaugh M, Pentel P, Pennell C (1997) High-level secretion of two antibody single chain Fv fragments by Pichia pastoris. J Immunol Methods 201:67–75. https://doi.org/10.1016/s0022-1759(96)00213-x

    Article  CAS  PubMed  Google Scholar 

  12. FitzGerald K, Holliger P, Winter G (1997) Improved tumour targeting by disulphide stabilized diabodies expressed in Pichia pastoris. Protein Eng Des Sel 10:1221–1225. https://doi.org/10.1093/protein/10.10.1221

    Article  CAS  Google Scholar 

  13. Persic L, Roberts A, Wilton J, Cattaneo A, Bradbury A, Hoogenboom H (1997) An integrated vector system for the eukaryotic expression of antibodies or their fragments after selection from phage display libraries. Gene 187:9–18. https://doi.org/10.1016/s0378-1119(96)00628-2

    Article  CAS  PubMed  Google Scholar 

  14. Helfrich W, Haisma H, Magdolen V, Luther T, Bom V, Westra J, van der Hoeven R, Kroesen B, Molema G, de Leij L (2000) A rapid and versatile method for harnessing scFv antibody fragments with various biological effector functions. J Immunol Methods 237:131–145. https://doi.org/10.1016/s0022-1759(99)00220-3

    Article  CAS  PubMed  Google Scholar 

  15. Jostock T (2004) Rapid generation of functional human IgG antibodies derived from Fab-on-phage display libraries. J Immunol Methods 289:65–80. https://doi.org/10.1016/s0022-1759(04)00119-x

    Article  CAS  PubMed  Google Scholar 

  16. Lou J, Marzari R, Verzillo V, Ferrero F, Pak D, Sheng M, Yang C, Sblattero D, Bradbury A (2001) Antibodies in haystacks: how selection strategy influences the outcome of selection from molecular diversity libraries. J Immunol Methods 253:233–242. https://doi.org/10.1016/s0022-1759(01)00385-4

    Article  CAS  PubMed  Google Scholar 

  17. Hoogenboom H (2005) Selecting and screening recombinant antibody libraries. Nat Biotechnol 23:1105–1116. https://doi.org/10.1038/nbt1126

    Article  CAS  PubMed  Google Scholar 

  18. Walter G, Konthur Z, Lehrach H (2012) High-throughput screening of surface displayed gene products. Comb Chem High Throughput Screen 4:193–205. https://doi.org/10.2174/1386207013331228

    Article  Google Scholar 

  19. Krebs B, Rauchenberger R, Reiffert S, Rothe C, Tesar M, Thomassen E, Cao M, Dreier T, Fischer D, Höß A, Inge L, Knappik A, Marget M, Pack P, Meng X, Schier R, Söhlemann P, Winter J, Wölle J, Kretzschmar T (2001) High-throughput generation and engineering of recombinant human antibodies. J Immunol Methods 254:67–84. https://doi.org/10.1016/s0022-1759(01)00398-2

    Article  CAS  PubMed  Google Scholar 

  20. Turunen L, Takkinen K, Söderlund H, Pulli T (2009) Automated panning and screening procedure on microplates for antibody generation from phage display libraries. J Biomol Screen 14:282–293. https://doi.org/10.1177/1087057108330113

    Article  CAS  PubMed  Google Scholar 

  21. Crameri RKodzius R (2012) The powerful combination of phage surface display of cDNA libraries and high throughput screening. Comb Chem High Throughput Screen 4:145–155. https://doi.org/10.2174/1386207013331237

    Article  Google Scholar 

  22. Hallborn J, Carlsson R (2002) Automated screening procedure for high-throughput generation of antibody fragments. Biotechniques Suppl:30–37

    PubMed  Google Scholar 

  23. Skerra A, Dreher M, Winter G (1991) Filter screening of antibody Fab fragments secreted from individual bacterial colonies: specific detection of antigen binding with a two-membrane system. Anal Biochem 196:151–155. https://doi.org/10.1016/0003-2697(91)90131-c

    Article  CAS  PubMed  Google Scholar 

  24. Dreher M, Gherardi E, Skerra A, Milstein C (1991) Colony assays for antibody fragments expressed in bacteria. J Immunol Methods 139:197–205. https://doi.org/10.1016/0022-1759(91)90189-m

    Article  CAS  PubMed  Google Scholar 

  25. Watkins J, Beuerlein G, Wu H, McFadden P, Pancook J, Huse W (1998) Discovery of human antibodies to cell surface antigens by capture lift screening of phage-expressed antibody libraries. Anal Biochem 256:169–177. https://doi.org/10.1006/abio.1997.2523

    Article  CAS  PubMed  Google Scholar 

  26. Wu H, Pancook JD, Greg Beuerlein H (2002) Cloning, isolation and characterization of human tumor in situ monoclonal antibodies. Cancer Immunol Immunother 51:79–90. https://doi.org/10.1007/s00262-001-0258-y

    Article  CAS  PubMed  Google Scholar 

  27. Robert R, Jacobin-Valat M, Daret D, Miraux S, Nurden A, Franconi J, Clofent-Sanchez G (2006) Identification of human scFvs targeting atherosclerotic lesions: selection by single round in vivo phage display. J Biol Chem 281:40135–40143. https://doi.org/10.1074/jbc.m609344200

    Article  CAS  PubMed  Google Scholar 

  28. de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18(9):989–994. https://doi.org/10.1038/79494

    Article  PubMed  Google Scholar 

  29. Holt L (2000) By-passing selection: direct screening for antibody-antigen interactions using protein arrays. Nucleic Acids Res 28:e72. https://doi.org/10.1093/nar/28.15.e72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kibat J, Schirrmann T, Knape M, Helmsing S, Meier D, Hust M, Schröder C, Bertinetti D, Winter G, Pardes K, Funk M, Vala A, Giese N, Herberg F, Dübel S, Hoheisel J (2016) Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality. New Biotechnol 33:574–581. https://doi.org/10.1016/j.nbt.2015.12.003

    Article  CAS  Google Scholar 

  31. Díez P, Jara-Acevedo R, González-González M, Casado-Vela J, Dasilva N, Lécrevisse Q, Bartolomé R, Claros J, González A, López R, Orfao A, Fuentes M (2015) High-throughgput phage-display screening in array format. Enzym Microb Technol 79-80:34–41. https://doi.org/10.1016/j.enzmictec.2015.06.016

    Article  Google Scholar 

  32. Angenendt P, Glökler J, Konthur Z, Lehrach H, Cahill D (2003) 3D protein microarrays: performing multiplex immunoassays on a single Chip. Anal Chem 75:4368–4372. https://doi.org/10.1021/ac034260l

    Article  CAS  PubMed  Google Scholar 

  33. Angenendt P, Wilde J, Kijanka G, Baars S, Cahill D, Kreutzberger J, Lehrach H, Konthur Z, Glökler J (2004) Seeing better through a MIST: evaluation of monoclonal recombinant antibody fragments on microarrays. Anal Chem 76:2916–2921. https://doi.org/10.1021/ac035357a

    Article  CAS  PubMed  Google Scholar 

  34. He M (2001) Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res 29:e73. https://doi.org/10.1093/nar/29.15.e73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramachandran N, Raphael J, Hainsworth E, Demirkan G, Fuentes M, Rolfs A, Hu Y, LaBaer J (2008) Next-generation high-density self-assembling functional protein arrays. Nat Methods 5:535–538. https://doi.org/10.1038/nmeth.1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Angenendt P (2006) Generation of high density protein microarrays by cell-free in situ expression of unpurified PCR products. Mol Cell Proteomics 5:1658–1666. https://doi.org/10.1074/mcp.t600024-mcp200

    Article  CAS  PubMed  Google Scholar 

  37. Lueking A, Horn M, Eickhoff H, Büssow K, Lehrach H, Walter G (1999) Protein microarrays for gene expression and antibody screening. Anal Biochem 270:103–111. https://doi.org/10.1006/abio.1999.4063

    Article  CAS  PubMed  Google Scholar 

  38. Poetz O, Ostendorp R, Brocks B, Schwenk J, Stoll D, Joos T, Templin M (2005) Protein microarrays for antibody profiling: specificity and affinity determination on a chip. Proteomics 5:2402–2411. https://doi.org/10.1002/pmic.200401299

    Article  CAS  PubMed  Google Scholar 

  39. Fischer N (2011) Sequencing antibody repertoires: the next generation. MAbs 3(1):17–20

    Article  PubMed  PubMed Central  Google Scholar 

  40. Glanville J, Zhai W, Berka J, Telman D, Huerta G, Mehta G, Ni I, Mei L, Sundar P, Day G, Cox D, Rajpal A, Pons J (2009) Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci 106:20216–20221. https://doi.org/10.1073/pnas.0909775106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turner K, Naciri J, Liu J, Anderson G, Goldman E, Zabetakis D (2016) Next-generation sequencing of a single domain antibody repertoire reveals quality of phage display selected candidates. PLoS One 11:e0149393. https://doi.org/10.1371/journal.pone.0149393

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ravn U, Gueneau F, Baerlocher L, Osteras M, Desmurs M, Malinge P, Magistrelli G, Farinelli L, Kosco-Vilbois M, Fischer N (2010) By-passing in vitro screening--next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucleic Acids Res 38:e193–e193. https://doi.org/10.1093/nar/gkq789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. ‘t Hoen P, Jirka S, ten Broeke B, Schultes E, Aguilera B, Pang K, Heemskerk H, Aartsma-Rus A, van Ommen G, den Dunnen J (2012) Phage display screening without repetitious selection rounds. Anal Biochem 421:622–631. https://doi.org/10.1016/j.ab.2011.11.005

    Article  PubMed  Google Scholar 

  44. Dias-Neto E, Nunes D, Giordano R, Sun J, Botz G, Yang K, Setubal J, Pasqualini R, Arap W (2009) Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS One 4:e8338. https://doi.org/10.1371/journal.pone.0008338

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lee C, Iorno N, Sierro F, Christ D (2007) Selection of human antibody fragments by phage display. Nat Protoc 2:3001–3008. https://doi.org/10.1038/nprot.2007.448

    Article  CAS  PubMed  Google Scholar 

  46. Díez P, Dasilva N, González-González M, Matarraz S, Casado-Vela J, Orfao A, Fuentes M (2012) Data analysis strategies for protein microarrays. Microarrays 1:64–83. https://doi.org/10.3390/microarrays1020064

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Carlos III Health Institute of Spain (FIS PI14/01538), Fondos FEDER (EU), Junta Castilla-Leon (BIO/SA07/15), and Fundación Solórzano FS/23-2015. The proteomics Unit belongs to ProteoRed-ISCIII, PRB2-ISCII, supported by grant PT13/001. P.D. is supported by a JCYL-EDU/346/2013 Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Fuentes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jara-Acevedo, R. et al. (2018). Screening Phage-Display Antibody Libraries Using Protein Arrays. In: Hust, M., Lim, T. (eds) Phage Display. Methods in Molecular Biology, vol 1701. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7447-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7447-4_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7446-7

  • Online ISBN: 978-1-4939-7447-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics