Skip to main content

MicroRNAs in Breast Cancer: Diagnostic and Therapeutic Potential

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1699))

Abstract

MicroRNAs (miRNAs) are a large family of small, approximately 20–22 nucleotide, noncoding RNAs that regulate the expression of target genes, at the post-transcriptional level. miRNAs are involved in virtually diverse biological processes and play crucial roles in cellular processes, such as cell differentiation, proliferation, and apoptosis. Accumulating lines of evidence have indicated that miRNAs play important roles in the maintenance of biological homeostasis and that aberrant expression levels of miRNAs are associated with the onset of many diseases, including cancer. It is possible that the diverse roles that miRNAs play, have potential to provide valuable information in a clinical setting, demonstrating the potential to act as both screening tools for the stratification of high-risk patients, while informing the treatment decision-making process. Increasing evidence suggests that some miRNAs may even provide assistance in the diagnosis of patients with breast cancer. In addition, miRNAs may themselves be considered therapeutic targets, with inhibition or reintroduction of a particular miRNA capable of inducing a response in-vivo. This chapter discusses the role of miRNAs as oncogenes and tumor suppressors in breast cancer development and metastasis . It focuses on miRNAs that have prognostic, diagnostic, or predictive potential in breast cancer as well as the possible challenges in the translation of such observations to the clinic.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Garzon R, Calin GA, Croce CM (2009) MicroRNAs in cancer. Annu Rev Med 60:167–179

    Article  CAS  PubMed  Google Scholar 

  2. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385

    Article  CAS  PubMed  Google Scholar 

  3. Bruce JP et al (2015) Identification of a microRNA signature associated with risk of distant metastasis in nasopharyngeal carcinoma. Oncotarget 6(6):4537

    Article  PubMed  PubMed Central  Google Scholar 

  4. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6(4):259–269

    Article  CAS  PubMed  Google Scholar 

  5. Jeansonne D et al (2015) Anti-tumoral effects of miR-3189-3p in glioblastoma. J Biol Chem 290(13):8067–8080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pinatel EM et al (2014) miR-223 is a coordinator of breast cancer progression as revealed by bioinformatics predictions. PLoS One 9(1):e84859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ben-Hamo R, Efroni S (2015) MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget 6(3):1594

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sotiropoulou G et al (2009) Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 15(8):1443–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calin GA et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 99(24):15524–15529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14):6029–6033

    Article  CAS  PubMed  Google Scholar 

  11. Iorio MV et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070

    Article  CAS  PubMed  Google Scholar 

  12. Denli AM et al (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235

    Article  CAS  PubMed  Google Scholar 

  13. Lee Y et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  PubMed  Google Scholar 

  14. Lund E et al (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98

    Article  CAS  PubMed  Google Scholar 

  15. Yi R et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2):185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bagga S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122(4):553–563

    Article  CAS  PubMed  Google Scholar 

  18. Grishok A et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34

    Article  CAS  PubMed  Google Scholar 

  19. Hutvagner GR et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531):834–838

    Article  CAS  PubMed  Google Scholar 

  20. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′ UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471

    Article  PubMed  CAS  Google Scholar 

  21. Qin W et al (2010) miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One 5(2):e9429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Portnoy V et al (2011) Small RNA and transcriptional upregulation. Wiley Interdiscip Rev RNA 2(5):748–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Place RF et al (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci 105(5):1608–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Asiaf A et al (2015) Protein expression and methylation of MGMT, a DNA repair gene and their correlation with clinicopathological parameters in invasive ductal carcinoma of the breast. Tumor Biol 36(8):6485–6496

    Article  CAS  Google Scholar 

  26. Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci 98(19):10869–10874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  28. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19(6):586–593

    Article  CAS  PubMed  Google Scholar 

  29. Liu C, Tang DG (2011) MicroRNA regulation of cancer stem cells. Cancer Res 71(18):5950–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nair VS, Maeda LS, Ioannidis JPA (2012) Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst 104(7):528–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu Y et al (2011) Anti-microRNA-222 (anti-miR-222) and-181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. J Biol Chem 286(49):42292–42302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blenkiron C et al (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 8(10):R214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mattie MD et al (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5(1):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lowery AJ et al (2009) MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res 11(3):R27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhang B et al (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302(1):1–12

    Article  CAS  PubMed  Google Scholar 

  37. Lund AH (2010) miR-10 in development and cancer. Cell Death Diff 17(2):209–214

    Article  CAS  Google Scholar 

  38. Gaur A et al (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67(6):2456–2468

    Article  CAS  PubMed  Google Scholar 

  39. Volinia S et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jongen-Lavrencic M et al (2008) MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111(10):5078–5085

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L et al (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci 103(24):9136–9141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bloomston M et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297(17):1901–1908

    Article  CAS  PubMed  Google Scholar 

  43. Varnholt H et al (2008) MicroRNA gene expression profile of hepatitis C virus- associated hepatocellular carcinoma. Hepatology 47(4):1223–1232

    Article  CAS  PubMed  Google Scholar 

  44. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y et al (2012) MicroRNA-10b targets E-cadherin and modulates breast cancer metastasis. Med Sci Monit 18(8):BR299–BR308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang C-H et al (2014) The prognostic significance of RUNX2 and miR-10a/10b and their inter-relationship in breast cancer. J Transl Med 12(1):257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pogribny IP et al (2010) Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 127(8):1785–1794

    Article  CAS  PubMed  Google Scholar 

  48. Ahmad A et al (2015) Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer 15(1):540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Moriarty CH, Pursell B, Mercurio AM (2010) miR-10b targets Tiam1 implications for Rac activation and carcinoma migration. J Biol Chem 285(27):20541–20546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsukerman P et al (2012) MiR-10b downregulates the stress-induced cell surface molecule MICB, a critical ligand for cancer cell recognition by natural killer cells. Cancer Res 72(21):5463–5472

    Article  CAS  PubMed  Google Scholar 

  51. Ouyang H et al (2014) microRNA-10b enhances pancreatic cancer cell invasion by suppressing TIP30 expression and promoting EGF and TGF-Î2 actions. Oncogene 33(38):4664–4674

    Article  CAS  PubMed  Google Scholar 

  52. Hoppe R et al (2013) Increased expression of miR-126 and miR-10a predict prolonged relapse-free time of primary oestrogen receptor-positive breast cancer following tamoxifen treatment. Eur J Cancer 49(17):3598–3608

    Article  CAS  PubMed  Google Scholar 

  53. Khan S et al (2015) MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer 15(1):1

    Article  CAS  Google Scholar 

  54. Perez-Rivas LG et al (2014) A microRNA signature associated with early recurrence in breast cancer. PLoS One 9(3):e91884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yanaihara N et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198

    Article  CAS  PubMed  Google Scholar 

  56. Fulci V et al (2007) Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109(11):4944–4951

    Article  CAS  PubMed  Google Scholar 

  57. Yan LX et al (2012) Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res 13(1):R2

    Article  CAS  Google Scholar 

  58. Huang T-H et al (2009) Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem 284(27):18515–18524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Si ML et al (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    Article  CAS  PubMed  Google Scholar 

  60. Huang G-L et al (2009) Clinical significance of miR-21 expression in breast cancer: SYBR-green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep 21(3):673–679

    CAS  PubMed  Google Scholar 

  61. Rask L et al (2014) Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell Oncol 37(3):215–227

    Article  CAS  Google Scholar 

  62. Tang Y et al (2014) High expression levels of miR-21 and miR-210 predict unfavorable survival in breast cancer: a systemic review and meta-analysis. Int J Biol Markers 30(4):e347–e358

    Google Scholar 

  63. Zhu S et al (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359

    Article  CAS  PubMed  Google Scholar 

  64. Zhu S et al (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336

    Article  CAS  PubMed  Google Scholar 

  65. Kwak HJ et al (2011) Downregulation of Spry2 by miR-21 triggers malignancy in human gliomas. Oncogene 30(21):2433–2442

    Article  CAS  PubMed  Google Scholar 

  66. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838

    Article  CAS  PubMed  Google Scholar 

  67. Li H et al (2011) miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat 126(3):565–575

    Article  CAS  PubMed  Google Scholar 

  68. Farazi TA et al (2011) MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res 71(13):4443–4453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saal LH et al (2008) Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nat Genet 40(1):102–107

    Article  CAS  PubMed  Google Scholar 

  70. Olive V et al (2009) miR-19 is a key oncogenic component of mir-17-92. Genes Dev 23(24):2839–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Coller HA, Forman JJ, Legesse-Miller A (2007) “Myc’ed messages”: myc induces transcription of E2F1 while inhibiting its translation via a microRNA polycistron. PLoS Genet 3(8):e146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hossain A, Kuo MT, Saunders GF (2006) Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26(21):8191–8201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu Z et al (2008) A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 182(3):509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ovcharenko D et al (2007) Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. Cancer Res 67(22):10782–10788

    Article  CAS  PubMed  Google Scholar 

  75. Jiang S et al (2010) MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res 70(8):3119–3127

    Article  CAS  PubMed  Google Scholar 

  76. Zhang M et al (2011) MicroRNA-155 may affect allograft survival by regulating the expression of suppressor of cytokine signaling 1. Med Hypotheses 77(4):682–684

    Article  CAS  PubMed  Google Scholar 

  77. Kong W et al (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol 28(22):6773–6784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Corcoran C et al (2011) Intracellular and extracellular microRNAs in breast cancer. Clin Chem 57(1):18–32

    Article  CAS  PubMed  Google Scholar 

  79. Kong W et al (2010) MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 285(23):17869–17879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Reinhart BJ et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  81. Bassing I, Slack FJ, Großhans H (2008) Let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 14(9):400–409

    Article  CAS  Google Scholar 

  82. Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21(9):1025–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boyerinas B et al (2008) Identification of let-7- regulated oncofetal genes. Cancer Res 68(8):2587–2591

    Article  CAS  PubMed  Google Scholar 

  84. Gurtan AM et al (2013) Let-7 represses Nr6a1 and a mid-gestation developmental program in adult fibroblasts. Genes Dev 27(8):941–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Piskounova E et al (2008) Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J Biol Chem 283(31):21310–21314

    Article  CAS  PubMed  Google Scholar 

  86. Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Piskounova E et al (2011) Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147(5):1066–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Choudhury NR et al (2014) Trim25 is an RNA-specific activator of Lin28a/TuT4-mediated uridylation. Cell Rep 9(4):1265–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Takamizawa J et al (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11):3753–3756

    Article  CAS  PubMed  Google Scholar 

  90. Zhang H-H et al (2007) Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J Gastroenterol: WJG 13(20):2883–2888

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Akao Y, Nakagawa Y, Naoe T (2006) Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29(5):903–906

    Article  CAS  PubMed  Google Scholar 

  92. Sampson VB et al (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67(20):9762–9770

    Article  CAS  PubMed  Google Scholar 

  93. Sempere LF et al (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67(24):11612–11620

    Article  CAS  PubMed  Google Scholar 

  94. Yu F et al (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    Article  CAS  PubMed  Google Scholar 

  95. Bhat-Nakshatri P et al (2009) Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res 37(14):4850–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhao Y et al (2011) Let-7 family miRNAs regulate estrogen receptor alpha signaling in estrogen receptor positive breast cancer. Breast Cancer Res Treat 127(1):69–80

    Article  CAS  PubMed  Google Scholar 

  97. Park S-M et al (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22(7):894–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Korpal M et al (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283(22):14910–14914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gregory PA et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601

    Article  CAS  PubMed  Google Scholar 

  100. Jurmeister S et al (2012) MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol 32(3):633–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chen J et al (2012) Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Med Oncol 29(4):2527–2534

    Article  CAS  PubMed  Google Scholar 

  102. Singh R, Mo Y-Y (2013) Role of microRNAs in breast cancer. Cancer Biol Ther 14(3):201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dykxhoorn DM et al (2009) miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One 4(9):e7181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Korpal M et al (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17(9):1101–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pecot CV et al (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Radojicic J et al (2011) MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle 10(3):507–517

    Article  CAS  PubMed  Google Scholar 

  107. Wu H, Zhu S, Mo Y-Y (2009) Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res 19(4):439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Iorio MV et al (2009) microRNA-205 regulates HER3 in human breast cancer. Cancer Res 69(6):2195–2200

    Article  CAS  PubMed  Google Scholar 

  109. Piovan C et al (2012) Oncosuppressive role of p53-induced miR-205 in triple negative breast cancer. Mol Oncol 6(4):458–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chao C-H et al (2014) MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest 124(7):3093–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang S et al (2009) miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol 34(5):1461–1466

    CAS  PubMed  Google Scholar 

  112. Spizzo R et al (2010) miR-145 participates with TP53 in a death-promoting regulatory loop and targets estrogen receptor- alpha in human breast cancer cells. Cell Death Diff 17(2):246–254

    Article  CAS  Google Scholar 

  113. Zhang J et al (2013) Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene 32(1):61–69

    Article  PubMed  CAS  Google Scholar 

  114. Sachdeva M et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci 106(9):3207–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sachdeva M, Mo Y-Y (2010) MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res 70(1):378–387

    Article  CAS  PubMed  Google Scholar 

  116. Gotte M et al (2010) miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 29(50):6569–6580

    Article  CAS  PubMed  Google Scholar 

  117. Kim S-J et al (2011) Development of microRNA-145 for therapeutic application in breast cancer. J Control Release 155(3):427–434

    Article  CAS  PubMed  Google Scholar 

  118. Zou C et al (2012) MiR-145 inhibits tumor angiogenesis and growth by N-RAS and VEGF. Cell Cycle 11(11):2137–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Eades G et al (2015) lincRNA-RoR and miR-145 regulate invasion in triple-negative breast cancer via targeting ARF6. Mol Cancer Res 13(2):330–338

    Article  CAS  PubMed  Google Scholar 

  120. Shen J et al (2011) Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer 11(1):1

    Article  CAS  Google Scholar 

  121. Cortez MA et al (2011) MicroRNAs in body fluids – the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhu W et al (2009) Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes 2(1):89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Wang F et al (2014) Increased circulating microRNA-155 as a potential biomarker for breast cancer screening: a meta-analysis. Molecules 19(5):6282–6293

    Article  PubMed  CAS  Google Scholar 

  124. Kodahl AR et al (2014) Novel circulating microRNA signature as a potential non-invasive multi-marker test in ER-positive early-stage breast cancer: a case control study. Mol Oncol 8(5):874–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chan M et al (2013) Identification of circulating microRNA signatures for breast cancer detection. Clin Cancer Res 19(16):4477–4487

    Article  CAS  PubMed  Google Scholar 

  126. Roth C et al (2010) Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res 12(6):R90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cuk K et al (2013) Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer 132(7):1602–1612

    Article  CAS  PubMed  Google Scholar 

  128. Ng EKO et al (2013) Circulating microRNAs as specific biomarkers for breast cancer detection. PLoS One 8(1):e53141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Godfrey AC et al (2013) Serum microRNA expression as an early marker for breast cancer risk in prospectively collected samples from the sister study cohort. Breast Cancer Res 15(3):R42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Takeshita F et al (2010) Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 18(1):181–187

    Article  CAS  PubMed  Google Scholar 

  131. Krutzfeldt J et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689

    Article  PubMed  CAS  Google Scholar 

  132. Broderick JA, Zamore PD (2011) MicroRNA therapeutics. Gene Ther 18(12):1104–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ma L et al (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28(4):341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Johnson SM et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  CAS  PubMed  Google Scholar 

  135. Park S-M et al (2007) Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle 6(21):2585–2590

    Article  CAS  PubMed  Google Scholar 

  136. Trang P et al (2011) Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 19(6):1116–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu Y et al (2012) MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J Immunol 188(11):5500–5510

    Article  CAS  PubMed  Google Scholar 

  138. Kitade Y, Akao Y (2010) MicroRNAs and their therapeutic potential for human diseases: microRNAs, miR-143 and-145, function as anti-oncomirs and the application of chemically modified miR-143 as an anti-cancer drug. J Pharmacol Sci 114(3):276–280

    Article  CAS  PubMed  Google Scholar 

  139. Pramanik D et al (2011) Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther 10(8):1470–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Afzal Zargar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Asiaf, A., Ahmad, S.T., Arjumand, W., Zargar, M.A. (2018). MicroRNAs in Breast Cancer: Diagnostic and Therapeutic Potential. In: Wu, W. (eds) MicroRNA and Cancer. Methods in Molecular Biology, vol 1699. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7435-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7435-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7433-7

  • Online ISBN: 978-1-4939-7435-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics