Skip to main content

Considerations on Experimental Design and Data Analysis of Chromatin Immunoprecipitation Experiments

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1689))

Abstract

Arguably one of the most valuable techniques to study chromatin organization, ChIP is the method of choice to map the contacts established between proteins and genomic DNA. Ever since its inception, more than 30 years ago, ChIP has been constantly evolving, improving, and expanding its capabilities and reach. Despite its widespread use by many laboratories across a wide variety of disciplines, ChIP assays can be sometimes challenging to design, and are often sensitive to variations in practical implementation.

In this chapter, we provide a general overview of the ChIP method and its most common variations, with a special focus on ChIP-seq. We try to address some of the most important aspects that need to be taken into account in order to design and perform experiments that generate the most reproducible, high-quality data. Some of the main topics covered include the use of properly characterized antibodies, alternatives to chromatin preparation, the need for proper controls, and some recommendations about ChIP-seq data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. van Steensel B (2011) Chromatin: constructing the big picture. EMBO J 30(10):1885–1895. doi:10.1038/emboj.2011.135

    Article  PubMed  PubMed Central  Google Scholar 

  2. MacAlpine DM, Almouzni G (2013) Chromatin and DNA replication. Cold Spring Harb Perspect Biol 5(8):1–22. doi:10.1101/cshperspect.a010207

    Article  Google Scholar 

  3. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. doi:10.1038/cr.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zemach A, McDaniel IE, Silva P et al (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328(5980):916–919. doi:10.1126/science.1186366

    Article  CAS  PubMed  Google Scholar 

  5. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500. doi:10.1038/nrg.2016.59

    Article  CAS  PubMed  Google Scholar 

  6. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81:4275–4279. doi:10.1073/pnas.81.14.4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gilmour DS, Lis JT (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5:2009–2018. doi:10.1128/mcb.5.8.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Solomon MJ, Larsen PL, Varshavsky A (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53(6):937–947. doi:10.1016/S0092-8674(88)90469-2

    Article  CAS  PubMed  Google Scholar 

  9. Mayer A, Lidschreiber M, Siebert M et al (2010) Uniform transitions of the general RNA polymerase II transcription complex. Nat Struct Mol Biol 17(10):1272–1278

    Article  CAS  PubMed  Google Scholar 

  10. Kharchenko PV, Alekseyenko AA, Schwartz YB et al (2011) Comprehensive analysis of the chromatin landscape in Drosophila. Nature 471(7339):480–485. doi:10.1038/nature09725

    Article  CAS  PubMed  Google Scholar 

  11. Kasinathan S, Orsi GA, Zentner GE et al (2014) High-resolution mapping of transcription factor binding sites on native chromatin. Nat Methods 11(2):203–209. doi:10.1038/nmeth.2766

    Article  CAS  PubMed  Google Scholar 

  12. Kidder BL, Hu G, Zhao K (2011) ChIP-seq: technical considerations for obtaining high quality data. Nat Immunol 12(10):918–922. doi:10.1038/ni.2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rozowsky J, Euskirchen G, Auerbach RK et al (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat Biotechnol 27:66–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leek JT, Scharpf RB, Bravo HC et al (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 11(10):733–739. doi:10.1038/nrg2825

    Article  CAS  PubMed  Google Scholar 

  15. Hoffman EA, Frey BL, Smith LM et al (2015) Formaldehyde crosslinking: a tool for the study of chromatin complexes. J Biol Chem 290(44):26404–26411. doi:10.1074/jbc.R115.651679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1(2):266–286. doi:10.1002/wrna.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hafner M, Landthaler M, Burger L et al (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. doi:10.1016/j.cell.2010.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A 82:6470–6474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quievryn G, Zhitkovich A (2000) Loss of DNA-protein crosslinks from formaldehyde-exposed cells occurs through spontaneous hydrolysis and an active repair process linked to proteosome function. Carcinogenesis 21:1573–1580

    Article  CAS  PubMed  Google Scholar 

  20. Kennedy-Darling J, Smith LM (2014) Measuring the formaldehyde protein-dna cross-link reversal rate. Anal Chem 86(12):5678–5681. doi:10.1021/ac501354y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Turner B (2001) ChIP with native chromatin: advantages and problems relative to methods using cross-linked material. In: Mapping protein/DNA interactions by cross-linking [Internet]. Institut National de la Santé et de la Recherche Médicale, Paris

    Google Scholar 

  22. Gade P, Kalvakolanu DV (2012) Chromatin immunoprecipitation assay as a tool for analyzing transcription factor activity. Methods Mol Biol 809:85–104. doi:10.1007/978-1-61779-376-9_6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mayer A, Churchman LS (2016) Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing. Nat Protoc 11(4):813–833. doi:10.1038/nprot.2016.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31(1):76–82

    Article  PubMed  Google Scholar 

  25. Heins JN, Suriano JR, Taniuchi H et al (1967) Characterization of a nuclease produced by Staphylococcus aureus. J Biol Chem 242(5):1016–1020

    CAS  PubMed  Google Scholar 

  26. Dingwall C, Lomonossoff GP, Laskey RA (1981) High sequence specificity of micrococcal nuclease. Nucleic Acids Res 9:2659–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Y, Negre N, Li Q et al (2012) Systematic evaluation of factors influencing ChIP-seq fidelity. Nat Methods 9:609–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Skene PJ, Hernandez AE, Groudine M et al (2014) The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. elife 3:e02042

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rhee HS, Pugh BF (2011) Comprehensive genome-wide protein–DNA interactions detected at single-nucleotide resolution. Cell 147:1408–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Landt SG, Marinov GK, Kundaje A et al (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813–1831. doi:10.1101/gr.136184.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peach SE, Rudomin EL, Udeshi ND et al (2012) Quantitative assessment of chromatin immunoprecipitation grade antibodies directed against histone modifications reveals patterns of co-occurring marks on histone protein molecules. Mol Cell Proteomics 11(5):128–137. doi:10.1074/mcp.M111.015941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park D, Lee Y, Bhupindersingh G et al (2013) Widespread misinterpretable ChIP-seq bias in yeast. PLoS One 8(12):e83506. doi:10.1371/journal.pone.0083506

    Article  PubMed  PubMed Central  Google Scholar 

  33. Auerbach RK, Euskirchen G, Rozowsky J et al (2009) Mapping accessible chromatin regions using Sono-Seq. Proc Natl Acad Sci U S A 106(35):14926–14931. doi:10.1073/pnas.0905443106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161–172. doi:10.1038/nrg2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ehrensberger AH, Franchini DM, East P et al (2015) Retention of the native epigenome in purified mammalian chromatin. PLoS One 10(8):e0133246. doi:10.1371/journal.pone.0133246

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bonhoure N, Bounova G, Bernasconi D et al (2014) Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 24(7):1157–1168. doi:10.1101/gr.168260.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eberle AB, Böhm S, Östlund Farrants AK et al (2012) The use of a synthetic DNA-antibody complex as external reference for chromatin immunoprecipitation. Anal Biochem 426(2):147–152. doi:10.1016/j.ab.2012.04.020

    Article  CAS  PubMed  Google Scholar 

  38. Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360

    Article  CAS  PubMed  Google Scholar 

  39. He X, Cicek AE, Wang Y et al (2015) De novo ChIP-seq analysis. Genome Biol 16(1):205. doi:10.1186/s13059-015-0756-4

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huber W, Toedling J, Steinmetz LM (2006) Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics 22(16):1963–1970

    Article  CAS  PubMed  Google Scholar 

  41. Zhao S, Fung-Leung WP, Bittner A et al (2014) Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS One 9(1):e78644

    Article  PubMed  PubMed Central  Google Scholar 

  42. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13:840–852. doi:10.1038/nrg3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351. doi:10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  44. Aird D, Ross MG, Chen WS et al (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12(2):R18. doi:10.1186/gb-2011-12-2-r18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chabbert CD, Adjalley SH, Klaus B et al (2015) A high-throughput ChIP-Seq for large-scale chromatin studies. Mol Syst Biol 11(1):777. doi:10.15252/msb.20145776

    Article  PubMed  PubMed Central  Google Scholar 

  46. van Galen P, Viny AD, Ram O et al (2016) A multiplexed system for quantitative comparisons of chromatin landscapes. Mol Cell 61(1):170–180. doi:10.1016/j.molcel.2015.11.003

    Article  PubMed  Google Scholar 

  47. Weiner A, Lara-Astiaso D, Krupalnik V et al (2016) Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution. Nat Biotechnol 34(9):953–961. doi:10.1038/nbt.3652

    Article  CAS  PubMed  Google Scholar 

  48. Meyer CA, Liu XS (2014) Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nat Rev Genet 15:709–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Myers RM, Stamatoyannopoulos J, Snyder M et al (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9:e1001046. doi:10.1371/journal.pbio.1001046

    Article  CAS  Google Scholar 

  50. Sims D, Sudbery I, Ilott NE et al (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 15:121–132

    Article  CAS  PubMed  Google Scholar 

  51. Jung YL, Luquette LJ, Ho JW et al (2014) Impact of sequencing depth in ChIP-seq experiments. Nucleic Acids Res 42:e74. doi:10.1093/nar/gku178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bailey T, Krajewski P, Ladunga I et al (2013) Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol 9(11):e1003326. doi:10.1371/journal.pcbi.1003326

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26(12):1351–1359. doi:10.1038/nbt.1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koehler R, Issac H, Cloonan N et al (2011) The uniqueome: a mappability resource for short-tag sequencing. Bioinformatics 27:272–274

    Article  CAS  PubMed  Google Scholar 

  56. Derrien T, Estelle J, Marco Sola S et al (2012) Fast computation and applications of genome mappability. PLoS One 7:e30377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. doi:10.1038/nbt.1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tyner C, Barber GP, Casper J et al (2017) The UCSC genome browser database: 2017 update. Nucleic Acids Res 45(Dastabase issue):D626–D634. doi:10.1093/nar/gkw1134

    PubMed  Google Scholar 

  59. Ji H, Jiang H, Ma W et al (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat Biotechnol 26:1293–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Diaz A, Park K, Lim DA et al (2012) Normalization, bias correction, and peak calling for ChIP-seq. Stat Appl Genet Mol Biol 11:article 9

    Article  PubMed  Google Scholar 

  61. Koohy H, Down TA, Spivakov M et al (2014) A comparison of peak callers used for DNase-Seq data. PLoS One 9(5):e96303. doi:10.1371/journal.pone.0096303

    Article  PubMed  PubMed Central  Google Scholar 

  62. Thomas R, Thomas S, Holloway AK et al (2016) Features that define the best ChIP-seq peak calling algorithms. Brief Bioinform 18(3):441–450. doi:10.1093/bib/bbw035

    PubMed Central  Google Scholar 

  63. Zhang Y, Liu T, Meyer CA et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137. doi:10.1186/gb-2008-9-9-r137

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zang C, Schones DE, Zeng C et al (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25(15):1952–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laajala TD, Raghav S, Tuomela S et al (2009) A practical comparison of methods for detecting transcription factor binding sites in ChIP-seq experiments. BMC Genomics 10:618

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wilbanks EG, Facciotti MT (2010) Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One 5:e11471

    Article  PubMed  PubMed Central  Google Scholar 

  67. Malone BM, Tan F, Bridges SM et al (2011) Comparison of four ChIP-Seq analytical algorithms using rice endosperm H3K27 trimethylation profiling data. PLoS One 6:e25260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rye MB, Saetrom P, Drablos F (2011) A manually curated ChIP-seq benchmark demonstrates room for improvement in current peak-finder programs. Nucleic Acids Res 39:e25

    Article  PubMed  Google Scholar 

  69. Li Q, Brown J, Huang H et al (2011) Measuring reproducibility of high-throughput experiments. Ann Appl Stat 5:1752–1779

    Article  Google Scholar 

  70. Shen L, Shao N, Liu X et al (2014) ngs.plot: quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15:284. doi:10.1186/1471-2164-15-284

    Article  PubMed  PubMed Central  Google Scholar 

  71. Stempor P, Ahringer J (2016) SeqPlots – interactive software for exploratory data analyses, pattern discovery and visualization in genomics. Wellcome Open Res 1:14. doi:10.12688/wellcomeopenres.10004.1

    Article  PubMed  PubMed Central  Google Scholar 

  72. Howe EA, Sinha R, Schlauch D et al (2011) RNA-Seq analysis in MeV. Bioinformatics 27(22):3209–3210. doi:10.1093/bioinformatics/btr490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ross-Innes CS, Stark R, Teschendorff AE et al (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481:389–393

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bailey TL, Johnson J, Grant CE et al (2015) The MEME suite. Nucleic Acids Res 43(Web Server issue):W39–W49. doi:10.1093/nar/gkv416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang W, Loganantharaj R, Schroeder B et al (2013) PAVIS: a tool for peak annotation and visualization. Bioinformatics 29(23):3097–3099. doi:10.1093/bioinformatics/btt520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McLean CY, Bristor D, Hiller M et al (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28(5):495–501. doi:10.1038/nbt.1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Eden E, Navon R, Steinfeld I et al (2009) GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10:48. doi:10.1186/1471-2105-10-48

    Article  PubMed  PubMed Central  Google Scholar 

  78. Angelini C, Costa V (2014) Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. Front Cell Dev Biol 2:51. doi:10.3389/fcell.2014.00051

    Article  PubMed  PubMed Central  Google Scholar 

  79. Eberle AB, Jordán-Pla A, Gañez-Zapater A et al (2015) An Interaction between RRP6 and SU(VAR)3-9 Targets RRP6 to Heterochromatin and Contributes to Heterochromatin Maintenance in Drosophila melanogaster. PLoS Genet 11(9):3–9. doi:10.1371/journal.pgen.1005523

    Article  Google Scholar 

  80. Zentner GE, Henikoff S (2014) High-resolution digital profiling of the epigenome. Nat Rev Genet 15(12):814–827

    Article  CAS  PubMed  Google Scholar 

  81. Rhee HS, Pugh BF (2012) Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483(7389):295–301. doi:10.1038/nature10799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Serandour AA, Brown GD, Cohen JD et al (2013) Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1-DNA binding properties. Genome Biol 14:R147

    Article  PubMed  PubMed Central  Google Scholar 

  83. Grün D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163(4):799–810. doi:10.1016/j.cell.2015.10.039

    Article  PubMed  Google Scholar 

  84. Junker JP, van Oudenaarden A (2014) Every cell is special: genome-wide studies add a new dimension to single-cell biology. Cell 157(1):8–11. doi:10.1016/j.cell.2014.02.010

    Article  CAS  PubMed  Google Scholar 

  85. Shalek AK, Satija R, Adiconis X et al (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498(7453):236–240. doi:10.1038/nature12172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kalisky T, Quake SR (2011) Single-cell genomics. Nat Methods 8:311–314

    Article  CAS  PubMed  Google Scholar 

  87. Munsky B, Neuert G, van Oudenaarden A (2012) Using gene expression noise to understand gene regulation. Science 336:183–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    Article  CAS  PubMed  Google Scholar 

  89. Gilfillan GD, Hughes T, Sheng Y et al (2012) Limitations and possibilities of low cell number ChIP-seq. BMC Genomics 13:645. doi:10.1186/1471-2164-13-645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schmidl C (2015) ChIPmentation: fast, robust, low-input ChIP-Seq for histones and transcription factors. Nat Methods 12:963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bolduc N (2016) Preparation of low-input and ligation-free libraries using template-switching technology. In: Current protocols in molecular biology, vol unit 7.26. Wiley & Sons

    Google Scholar 

  92. Adli M, Bernstein BE (2011) Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat Protoc 6(10):1656–1668. doi:10.1038/nprot.2011.402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shankaranarayanan P, Mendoza-Parra MA, Walia M et al (2011) Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nat Methods 8(7):565–567. doi:10.1038/nmeth.1626

    Article  CAS  PubMed  Google Scholar 

  94. Acevedo LG, Iniguez AL, Holster HL et al (2007) Genome-scale ChIP-chip analysis using 10,000 human cells. BioTechniques 43:791–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dahl JA, Collas P (2009) MicroChIP: chromatin immunoprecipitation for small cell numbers. Methods Mol Biol 567:59–74. doi:10.1007/978-1-60327-414-2_4

    Article  CAS  PubMed  Google Scholar 

  96. Rotem A, Ram O, Shoresh N et al (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33(11):1165–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our work is supported by grants from The Swedish Research Council and The Swedish Cancer Society to N.V. A.J.P. was supported by the Department of Molecular Biosciences, The Wenner-Gren Institute at the Stockholm University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Jordán-Pla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jordán-Pla, A., Visa, N. (2018). Considerations on Experimental Design and Data Analysis of Chromatin Immunoprecipitation Experiments. In: Visa, N., Jordán-Pla, A. (eds) Chromatin Immunoprecipitation. Methods in Molecular Biology, vol 1689. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7380-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7380-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7379-8

  • Online ISBN: 978-1-4939-7380-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics