Skip to main content

High Content Positional Biosensor Assay to Screen for Compounds that Prevent or Disrupt Androgen Receptor and Transcription Intermediary Factor 2 Protein-Protein Interactions

  • Protocol
  • First Online:
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1683))

Abstract

Transcriptional Intermediary Factor 2 (TIF2) is a key Androgen receptor (AR) coactivator that has been implicated in the development and progression of castration resistant prostate cancer (CRPC). This chapter describes the implementation of an AR-TIF2 protein-protein interaction (PPI) biosensor assay to screen for small molecules that can induce AR-TIF2 PPIs, inhibit the DHT-induced formation of AR-TIF2 PPIs, or disrupt pre-existing AR-TIF2 PPIs. The biosensor assay employs high content imaging and analysis to quantify AR-TIF2 PPIs and integrates physiologically relevant cell-based assays with the specificity of binding assays by incorporating structural information from AR and TIF2 functional domains along with intracellular targeting sequences using fluorescent protein reporters. Expression of the AR-Red Fluorescent Protein (RFP) “prey” and TIF2-Green Fluorescent Protein (GFP) “bait” components of the biosensor is directed by recombinant adenovirus (rAV) expression constructs that facilitated a simple co-infection protocol to produce homogeneous expression of both biosensors that is scalable for screening. In untreated cells, AR-RFP expression is localized predominantly to the cytoplasm and TIF2-GFP expression is localized only in the nucleoli of the nucleus. Exposure to DHT induces the co-localization of AR-RFP within the TIF2-GFP positive nucleoli of the nucleus. The AR-TIF2 biosensor assay therefore recapitulates the ligand-induced translocation of latent AR from the cytoplasm to the nucleus, and the PPIs between AR and TIF2 result in the colocalization of AR-RFP within TIF2-GFP expressing nucleoli. The AR-TIF2 PPI biosensor approach offers significant promise for identifying molecules with potential to modulate AR transcriptional activity in a cell-specific manner that may overcome the development of resistance and progression to CRPC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Colas P (2008) High-throughput screening assays to discover small-molecule inhibitors of protein interactions. Curr Drug Discov Technol 5:190–199

    Article  CAS  Google Scholar 

  2. Dudgeon D, Shinde SN, Shun TY, Lazo JS, Strock CJ, Giuliano KA, Taylor DL, Johnston PA, Johnston PA (2010) Characterization and optimization of a novel protein-protein interaction biosensor HCS assay to identify disruptors of the interactions between p53 and hDM2. Assay Drug Dev Technol 8:437–458

    Article  CAS  Google Scholar 

  3. Dudgeon D, Shinde SN, Hua Y, Shun TY, Lazo JS, Strock CJ, Giuliano KA, Taylor DL, Johnston PA, Johnston PA (2010) Implementation of a 220,000 compound HCS campaign to identify disruptors of the interaction between p53 and hDM2, and characterization of the confirmed hits. J Biomol Screen 15:152–174

    Article  Google Scholar 

  4. Hua Y, Shun TY, Strock CJ, Johnston PA (2014) High-content positional biosensor screening assay for compounds to prevent or disrupt androgen receptor and transcriptional intermediary factor 2 protein-protein interactions. Assay Drug Dev Technol 12:395–418

    Article  CAS  Google Scholar 

  5. Lalonde S, Ehrhardt DW, Loqué D, Chen J, Rhee SY, Frommer WB (2008) Molecular and cellular approaches for the detection of protein-protein interactions: latest techniques and current limitations. Plant J 53:610–635

    Article  CAS  Google Scholar 

  6. Pagliaro L, Felding J, Audouze K, Nielsen SJ, Terry RB, Krog-Jensen C, Butcher S (2004) Emerging classes of protein-protein interaction inhibitors and new tools for their development. Curr Opin Chem Biol 8:442–449

    Article  CAS  Google Scholar 

  7. Reilly M, Cunningham KA, Natarajan A (2009) Protein-protein interactions as therapeutic targets in neuropsychopharmacology. Neuropsychopharmacology 34:247–248

    Article  CAS  Google Scholar 

  8. Wells J, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009

    Article  CAS  Google Scholar 

  9. Koehler A (2010) A complex task? Direct modulation of transcription factors with small molecules. Curr Opin Chem Biol 14:331–340

    Article  CAS  Google Scholar 

  10. Kumar S, Saradhi M, Chaturvedi NK, Tyagi RK (2006) Intracellular localization and nucleocytoplasmic trafficking of steroid receptors: an overview. Mol Cell Endocrinol 246:147–156

    Article  CAS  Google Scholar 

  11. Stauber R, Afonina E, Gulnik S, Erickson J, Pavlakis GN (1998) Analysis of intracellular trafficking and interactions of cytoplasmic HIV-1 Rev mutants in living cells. Virology 251:38–48

    Article  CAS  Google Scholar 

  12. Stauber R (2002) Analysis of nucleocytoplasmic transport using green fluorescent protein. Methods Mol Biol 183:181–198

    CAS  Google Scholar 

  13. Johnston P, Sen M, Hua Y, Camarco D, Shun TY, Lazo JS, Grandis JR (2014) High-content pSTAT3/1 imaging assays to screen for selective inhibitors of STAT3 pathway activation in head and neck cancer cell lines. Assay Drug Dev Technol 12:55–79

    Article  CAS  Google Scholar 

  14. Johnston PA, Shinde SN, Hua Y, Shun TY, Lazo JS, Day BW (2012) Development and validation of a high-content screening assay to identify inhibitors of cytoplasmic Dynein-mediated transport of glucocorticoid receptor to the nucleus. Assay Drug Dev Technol 10:432–456

    Article  CAS  Google Scholar 

  15. Nickischer D, Laethem C, Trask OJ, Williams RG, Kandasamy R, Johnston PA, Johnston PA (2006) Development and implementation of three mitogen-activated protein kinase (MAPK) signaling pathway imaging assays to provide MAPK module selectivity profiling for kinase inhibitors: MK2-EGFP translocation, c-Jun, and ERK activation. Methods Enzymol 414:389–418

    Article  CAS  Google Scholar 

  16. Trask O, Baker A, Williams RG, Nickischer D, Kandasamy R, Laethem C, Johnston PA, Johnston PA (2006) Assay development and case history of a 32K-biased library high-content MK2-EGFP translocation screen to identify p38 mitogen-activated protein kinase inhibitors on the ArrayScan 3.1 imaging platform. Methods Enzymol 414:419–439

    Article  CAS  Google Scholar 

  17. Trask O, Nickischer D, Burton A, Williams RG, Kandasamy RA, Johnston PA, Johnston PA (2009) High-throughput automated confocal microscopy imaging screen of a kinase-focused library to identify p38 mitogen-activated protein kinase inhibitors using the GE InCell 3000 analyzer. Methods Mol Biol 565:159–186

    Article  CAS  Google Scholar 

  18. Williams R, Kandasamy R, Nickischer D, Trask OJ, Laethem C, Johnston PA, Johnston PA (2006) Generation and characterization of a stable MK2-EGFP cell line and subsequent development of a high-content imaging assay on the Cellomics ArrayScan platform to screen for p38 mitogen-activated protein kinase inhibitors. Methods Enzymol 414:364–389

    Article  CAS  Google Scholar 

  19. Knauer S, Moodt S, Berg T, Liebel U, Pepperkok R, Stauber RH (2005) Translocation biosensors to study signal-specific nucleo-cytoplasmic transport, protease activity and protein-protein interactions. Traffic 6:594–606

    Article  CAS  Google Scholar 

  20. Knauer S, Stauber RH (2005) Development of an autofluorescent translocation biosensor system to investigate protein-protein interactions in living cells. Anal Chem 77:4815–4820

    Article  CAS  Google Scholar 

  21. Burd C, Morey LM, Knudsen KE (2006) Androgen receptor corepressors and prostate cancer. Endocr Relat Cancer 13:979–994

    Article  CAS  Google Scholar 

  22. Chmelar R, Buchanan G, Need EM, Tilley W, Greenberg NM (2006) Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 120:719–733

    Article  Google Scholar 

  23. Culig Z, Hobisch A, Bartsch G, Klocker H (2000) Androgen receptor--an update of mechanisms of action in prostate cancer. Urol Res 28:211–219

    Article  CAS  Google Scholar 

  24. Culig Z, Klocker H, Bartsch G, Hobisch A (2002) Androgen receptors in prostate cancer. Endocr Relat Cancer 9:155–170

    Article  CAS  Google Scholar 

  25. Gregory C, Johnson RT Jr, Mohler JL, French FS, Wilson EM (2001) Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res 61:2892–2898

    CAS  Google Scholar 

  26. Evans RM (1988) The steroid and thyroid hormone receptor family. Science 240:889–895

    Article  CAS  Google Scholar 

  27. McKenna N, O’Malley BW (2002) Minireview: nuclear receptor coactivators--an update. Endocrinology 143:2461–2465

    Article  CAS  Google Scholar 

  28. McKenna N, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474

    Article  CAS  Google Scholar 

  29. Culig Z, Santer FR (2012) Androgen receptor co-activators in the regulation of cellular events in prostate cancer. World J Urol 30:297–302

    Article  CAS  Google Scholar 

  30. Culig Z, Santer FR (2013) Molecular aspects of androgenic signaling and possible targets for therapeutic intervention in prostate cancer. Steroids 78(9):851–859

    Article  CAS  Google Scholar 

  31. Fujimoto N, Miyamoto H, Mizokami A, Harada S, Nomura M, Ueta Y, Sasaguri T, Matsumoto T (2007) Prostate cancer cells increase androgen sensitivity by increase in nuclear androgen receptor and androgen receptor coactivators; a possible mechanism of hormone-resistance of prostate cancer cells. Cancer Investig 25:32–37

    Article  CAS  Google Scholar 

  32. Agoulnik I, Vaid A, Nakka M, Alvarado M, Bingman WE 3rd, Erdem H, Frolov A, Smith CL, Ayala GE, Ittmann MM, Weigel NL (2006) Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res 66:10594–10602

    Article  CAS  Google Scholar 

  33. Feng S, Tang Q, Sun M, Chun JY, Evans CP, Gao AC (2009) Interleukin-6 increases prostate cancer cells resistance to bicalutamide via TIF2. Mol Cancer Ther 8:665–671

    Article  CAS  Google Scholar 

  34. Nakka M, Agoulnik IU, Weigel NL (2013) Targeted disruption of the p160 coactivator interface of androgen receptor (AR) selectively inhibits AR activity in both androgen-dependent and castration-resistant AR-expressing prostate cancer cells. Int J Biochem Cell Biol 45:763–772

    Article  CAS  Google Scholar 

  35. Shi X, Xue L, Zou JX, Gandour-Edwards R, Chen H, deVere White RW (2008) Prolonged androgen receptor loading onto chromatin and the efficient recruitment of p160 coactivators contribute to androgen-independent growth of prostate cancer cells. Prostate 68:1816–1826

    Article  CAS  Google Scholar 

  36. Xu J, Li Q (2003) Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol 17:1681–1692

    Article  CAS  Google Scholar 

  37. Bebermeier J, Brooks JD, DePrimo SE, Werner R, Deppe U, Demeter J, Hiort O, Holterhus PM (2006) Cell-line and tissue-specific signatures of androgen receptor-coregulator transcription. J Mol Med 84:919–931

    Article  CAS  Google Scholar 

  38. Heemers H, Schmidt LJ, Kidd E, Raclaw KA, Regan KM, Tindall DJ (2010) Differential regulation of steroid nuclear receptor coregulator expression between normal and neoplastic prostate epithelial cells. Prostate 70:959–970

    CAS  Google Scholar 

  39. Huang P, Chandra V, Rastinejad F (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 72:247–272

    Article  CAS  Google Scholar 

  40. Sonneveld E, Jansen HJ, Riteco JA, Brouwer A, van der Burg B (2005) Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. Toxicol Sci 83:136–148

    Article  CAS  Google Scholar 

  41. Festuccia C, Gravina GL, Angelucci A, Millimaggi D, Muzi P, Vicentini C, Bologna M (2005) Additive antitumor effects of the epidermal growth factor receptor tyrosine kinase inhibitor, gefitinib (Iressa), and the nonsteroidal antiandrogen, bicalutamide (Casodex), in prostate cancer cells in vitro. Int J Cancer 115:630–640

    Article  CAS  Google Scholar 

  42. Luo S, Martel C, LeBlanc G, Candas B, Singh SM, Labrie C, Simard J, Belanger A, Labrie F (1996) Relative potencies of flutamide and casodex: preclinical studies. Endocr Relat Cancer 3:229–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The studies reported herein were funded by grant support from the National Institutes of Health (NIH); R21NS073889 Johnston (PI) from the NINDS, and R01CA160423 and RO1CA183882 Johnston (PI) from the NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Johnston Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hua, Y., Camarco, D.P., Strock, C.J., Johnston, P.A. (2018). High Content Positional Biosensor Assay to Screen for Compounds that Prevent or Disrupt Androgen Receptor and Transcription Intermediary Factor 2 Protein-Protein Interactions. In: Johnston, P., Trask, O. (eds) High Content Screening. Methods in Molecular Biology, vol 1683. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7357-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7357-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7355-2

  • Online ISBN: 978-1-4939-7357-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics