Skip to main content

Whole Genome Chromatin IP-Sequencing (ChIP-Seq) in Skeletal Muscle Cells

  • Protocol
  • First Online:
Skeletal Muscle Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1668))

Abstract

Transcriptional control of gene expression in skeletal muscle cell is involved in different processes ranging from muscle formation to regeneration. The identification of an increasing number of transcription factors, co-factors, and histone modifications has been greatly advanced by methods that allow studies of genome-wide chromatin-protein interactions. Chromatin immunoprecipitation with massively parallel DNA sequencing, or ChIP-seq, is a powerful tool for identifying binding sites of TFs/co-factors and histone modifications. The major steps of this technique involve immunoprecipitation of fragmented chromatin, followed by high-throughput sequencing to identify the protein bound regions genome-wide. Here, in this protocol, we will illustrate how the entire ChIP-seq is performed using global H3K27ac profiling in myoblast cells as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sincennes MC, Brun CE, Rudnicki MA (2016) Concise review: epigenetic regulation of myogenesis in health and disease. Stem Cells Transl Med 5(3):282–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brack AS, Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10(5):504–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Diehl AG, Boyle AP (2016) Deciphering ENCODE. Trends Genet 32(4):238–249

    Article  CAS  PubMed  Google Scholar 

  4. Tierney MT, Sacco A (2016) Satellite cell heterogeneity in skeletal muscle homeostasis. Trends Cell Biol 26(6):434–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Segalés J, Perdiguero E, Muñoz-Cánoves P (2015) Epigenetic control of adult skeletal muscle stem cell functions. FEBS J 282(9):1571–1588

    Article  PubMed  Google Scholar 

  6. Fu X, Wang H, Hu P (2015) Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 72(9):1633–1677

    Article  Google Scholar 

  7. Blum R, Vethantham V, Bowman C, Rudnicki M, Dynlacht BD (2012) Genome-wide identification of enhancers in skeletal muscle: the role of MyoD1. Genes Dev 26(24):2763–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sebastian S, Faralli H, Yao Z, Rakopoulos P, Palii C, Cao Y, Singh K, Liu QC, Chu A, Aziz A, Brand M, Tapscoot SJ, Dilworth FJ (2013) Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation. Genes Dev 27(11):1247–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Asp P, Blum R, Vethantham V, Parisi F, Micsinai M, Cheng J, Bowman C, Kluger Y, Dynlacht BD (2011) Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A 108(22):E149–E158

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lu L, Sun K, Chen X, Zhao Y, Wang L, Zhou L, Sun H, Wang H (2013) Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis. EMBO J 32(19):2575–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blum R, Dynlacht BD (2013) The role of MyoD1 and histone modifications in the activation of muscle enhancers. Epigenetics 8(8):778:784

    Article  PubMed Central  Google Scholar 

  12. Peng X, So K, He L, Zhao Y, Zhou J, Li Y, Yao M, Xu B, Zhang S, Yao H, Hu P, Sun H, Wang H (2017) MyoD- and FoxO3-mediated hotspot interaction orchestrates super-enhancer activity during myogenic differentiation. Nucleic Acids Res. doi:10.1093/nar/gkx488

  13. Liu L, Cheung TH, Charville GW, Hurgo BMC, Leavitt T, Shih J, Brunet A, Rando TA (2013) Chromatin modifications as determinants of muscle stem cell quiescence and chronological aging. Cell Rep 4(1):189–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vernimmen D, Bickmore WA (2015) The hierarchy of transcriptional activation: from enhancer to promoter. Trends Genet 31(12):696–708

    Article  CAS  PubMed  Google Scholar 

  15. Shlyueva D, Stampfel G, Stark A (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 15(4):272–286

    Article  CAS  PubMed  Google Scholar 

  16. Arrigoni L, Richter AS, Betancourt E, Bruder K, Diehl S, Manke T, Bönisch U (2016) Standardizing chromatin research: a simple and universal method for ChIP-seq. Nucleic Acids Res 44(7):e67

    Article  PubMed  Google Scholar 

  17. Thomas-Chollier M, Darbo E, Herrmann C, Defrance M, Thieffry D, van Helden J (2012) A complete workflow for the analysis of full-size ChIP-seq (and similar) data sets using peak-motifs. Nat Protoc 7(8):1551–1568

    Article  CAS  PubMed  Google Scholar 

  18. Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, Madrigal P, Taslim C, Zhang J (2013) Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol 9(11):e1003326

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The work is substantially supported by General Research Funds (GRF) from the Research Grants Council (RGC) of the Hong Kong Special Administrative Region [14102315 and 14113514 to H.S.; 14133016, 14100415, 14116014, and 476113 to H.W.]; Focused Innovations Scheme: Scheme B to H.S. [Project Code: 1907307]; RGC Collaborative Research Fund (CRF) from RGC [Project Code: C6015- 14G to H.S. and H.W.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huating Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

So, K.K., Peng, X.L., Sun, H., Wang, H. (2017). Whole Genome Chromatin IP-Sequencing (ChIP-Seq) in Skeletal Muscle Cells. In: Ryall, J. (eds) Skeletal Muscle Development. Methods in Molecular Biology, vol 1668. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7283-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7283-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7282-1

  • Online ISBN: 978-1-4939-7283-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics