Skip to main content

Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity

  • Protocol
  • First Online:
Selenoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1661))

Abstract

The sulfur-containing amino acid methionine (Met) plays critical roles in protein synthesis, methylation, and sulfur metabolism. Both in its free form and in the form of an amino acid residue, it can be oxidized to the R and S diastereomers of methionine sulfoxide (MetO). Organisms evolved methionine sulfoxide reductases (MSRs) to reduce MetO to Met, with the MSRs type A (MSRA) and type B (MSRB) being specific for the S and R forms of MetO, respectively. In mammals, the selenoprotein MSRB1 plays an important protein repair function, and its expression is tightly regulated by dietary selenium. In this chapter, we describe a protocol for determining the concentration of protein-based Met-R-O and its analysis in HEK293 cells using a genetically encoded ratiometric fluorescent biosensor MetROx. We also describe the procedure for quantifying MSR activities in cell extracts using specific substrates and a reverse phase HPLC-based method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ray PD, Huang B-W, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24:981–990. doi:10.1016/j.cellsig.2012.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tarrago L, Gladyshev VN (2012) Recharging oxidative protein repair: catalysis by methionine sulfoxide reductases towards their amino acid, protein, and model substrates. Biochemistry (Biokhimiia) 77:1097–1107. doi:10.1134/S0006297912100021

    Article  CAS  Google Scholar 

  3. Tarrago L, Kaya A, Weerapana E et al (2012) Methionine sulfoxide reductases preferentially reduce unfolded oxidized proteins and protect cells from oxidative protein unfolding. J Biol Chem 287:24448–24459. doi:10.1074/jbc.M112.374520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Le DT, Lee BC, Marino SM et al (2009) Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae. J Biol Chem 284:4354–4364. doi:10.1074/jbc.M805891200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin Z, Johnson LC, Weissbach H et al (2007) Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proc Natl Acad Sci U S A 104:9597–9602. doi:10.1073/pnas.0703774104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee BC, Le DT, Gladyshev VN (2008) Mammals reduce methionine-S-sulfoxide with MsrA and are unable to reduce methionine-R-sulfoxide, and this function can be restored with a yeast reductase. J Biol Chem 283:28361–28369. doi:10.1074/jbc.M805059200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim H-Y, Gladyshev VN (2004) Methionine sulfoxide reduction in mammals: characterization of methionine-R-sulfoxide reductases. Mol Biol Cell 15:1055–1064. doi:10.1091/mbc.E03-08-0629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kryukov GV, Kryukov VM, Gladyshev VN (1999) New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. J Biol Chem 274:33888–33897

    Article  CAS  PubMed  Google Scholar 

  9. Lescure A, Gautheret D, Carbon P, Krol A (1999) Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J Biol Chem 274:38147–38154

    Article  CAS  PubMed  Google Scholar 

  10. Fomenko DE, Novoselov SV, Natarajan SK et al (2009) MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: roles of MsrB1 in redox regulation and identification of a novel selenoprotein form. J Biol Chem 284:5986–5993. doi:10.1074/jbc.M805770200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Novoselov SV, Kim H-Y, Hua D et al (2010) Regulation of selenoproteins and methionine sulfoxide reductases A and B1 by age, calorie restriction, and dietary selenium in mice. Antioxid Redox Signal 12:829–838. doi:10.1089/ars.2009.2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao G, Lee KP, van der Wijst J et al (2010) Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress. J Biol Chem 285:26081–26087. doi:10.1074/jbc.M110.103655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee BC, Péterfi Z, Hoffmann FW et al (2013) MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol Cell 51:397–404. doi:10.1016/j.molcel.2013.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tarrago L, Péterfi Z, Lee BC et al (2015) Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors. Nat Chem Biol 11:332–338. doi:10.1038/nchembio.1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Péterfi Z, Tarrago L, Gladyshev VN (2016) Practical guide for dynamic monitoring of protein oxidation using genetically encoded ratiometric fluorescent biosensors of methionine sulfoxide. Methods 109:149–157. doi:10.1016/j.ymeth.2016.06.022

    Article  PubMed  Google Scholar 

  16. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529. doi:10.1002/mrd.22489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  18. Gennaris A, Ezraty B, Henry C et al (2015) Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons. Nature 528:409–412. doi:10.1038/nature15764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lavine TF (1947) The formation, resolution, and optical properties of the diastereoisomeric sulfoxides derived from L-methionine. J Biol Chem 169:477–491

    CAS  PubMed  Google Scholar 

  20. Christensen BW, Kjær A (1965) The absolute configuration of methionine sulphoxide. Chem Commun (London):225–226. doi:10.1039/C19650000225

  21. Holland HL, Andreana PR, Brown FM (1999) Biocatalytic and chemical routes to all the stereoisomers of methionine and ethionine sulfoxides. Tetrahedron Asymmetry 10:2833–2843. doi:10.1016/S0957-4166(99)00271-2

    Article  CAS  Google Scholar 

  22. Vieira Dos Santos C, Cuiné S, Rouhier N, Rey P (2005) The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress. Plant Physiol 138:909–922. doi:10.1104/pp.105.062430

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grant AG021518. Pascal Rey (CEA, DRF, BIAM, Laboratoire d’Ecophysiologie Moléculaire des Plantes, France) is acknowledged for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lionel Tarrago or Vadim N. Gladyshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tarrago, L., Oheix, E., Péterfi, Z., Gladyshev, V.N. (2018). Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity. In: Chavatte, L. (eds) Selenoproteins. Methods in Molecular Biology, vol 1661. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7258-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7258-6_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7257-9

  • Online ISBN: 978-1-4939-7258-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics