Skip to main content

CRENAME, A Molecular Microbiology Method Enabling Multiparametric Assessment of Potable/Drinking Water

  • Protocol
  • First Online:
PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1620))

Abstract

The microbial assessment of potable/drinking water is done to ensure that the resource is free of fecal contamination indicators or waterborne pathogens. Culture-based methods for verifying the microbial safety are limited in the sense that a standard volume of water is generally tested for only one indicator (family) or pathogen.

In this work, we describe a membrane filtration-based molecular microbiology method, CRENAME (Concentration Recovery Extraction of Nucleic Acids and Molecular Enrichment), exploiting molecular enrichment by whole genome amplification (WGA) to yield, in less than 4 h, a nucleic acid preparation which can be repetitively tested by real-time PCR for example, to provide multiparametric presence/absence tests (1 colony forming unit or microbial particle per standard volume of 100-1000 mL) for bacterial or protozoan parasite cells or particles susceptible to contaminate potable/drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OECD (Organisation for Economic Co-operation and Development) (1999) Health Policy brief – molecular technologies for safe drinking water: results from the interlaken workshop, Switzerland. http://www.oecd.org/health/biotech/2097510.pdf. Accessed 16 Jun 2016

  2. Maheux AF, Bissonnette L, Huppé V et al (2016) The requirements and challenges of a mobile laboratory for onsite water microbiology assessment. Water Pract Technol 11:198–209. doi:10.2166/wpt.2016.024

    Article  Google Scholar 

  3. Costán-Longares A, Montemayor M, Payán A et al (2008) Microbial indicators and pathogens: removal, relationships and predictive capabilities in water reclamation facilities. Water Res 42:4439–4448

    Article  Google Scholar 

  4. USEPA (United States Environmental Protection Agency) (2008) Literature review of molecular methods for simultaneous detection of pathogens in water. EPA/600/R-07/128, Environmental Technology Council, United States Environmental Protection Agency, Cincinnati, OH, p 139. http://nepis.epa.gov/Adobe/PDF/P1008BJ3.pdf. Accessed 16 Jun 2016

  5. Payment P, Locas A (2011) Pathogens in water: value and limits of correlation with microbial indicators. Ground Water 49:4–11

    Article  CAS  Google Scholar 

  6. Wu J, Long SC, Das D et al (2011) Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J Water Health 9:265–278

    Article  CAS  Google Scholar 

  7. Maheux AF, Bissonnette L, Boissinot M et al (2011) Rapid concentration and molecular enrichment approach for sensitive detection of Escherichia coli/Shigella in potable water samples. Appl Environ Microbiol 77:6199–6207

    Article  CAS  Google Scholar 

  8. Li L, Mendis N, Trigui H, Oliver JD et al (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:258

    Google Scholar 

  9. Lasken RS, Egholm M (2003) Whole genome amplification: abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol 21:531–535

    Article  CAS  Google Scholar 

  10. Lovmar L, Syvänen A-C (2006) Multiple displacement amplification to create a long-lasting source of DNA for genetic studies. Hum Mutat 27:603–614

    Article  CAS  Google Scholar 

  11. Binga EK, Lasken RS, Neufeld JD (2008) Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J 2:233–241

    Article  CAS  Google Scholar 

  12. Scheusner DL, Busta FF, Speck ML (1971) Inhibition of injured Escherichia coli by several selective agents. Appl Microbiol 21:46–49

    CAS  Google Scholar 

  13. Feng PC, Hartman PA (1982) Fluorogenic assays for immediate confirmation of Escherichia coli. Appl Environ Microbiol 43:1320–1329

    CAS  Google Scholar 

  14. Frahm E, Obst U (2003) Application of the fluorogenic probe technique (TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples. J Microbiol Meth 52:123–131

    Article  CAS  Google Scholar 

  15. Dwivedi HP, Jaykus L-E (2011) Detection of pathogens in foods: the current state-of-the art and future directions. Crit Rev Microbiol 37:40–63

    Article  CAS  Google Scholar 

  16. Sontakke S, Cadenas MB, Maggi RG et al (2009) Use of broad range 16S rDNA PCR in clinical microbiology. J Microbiol Meth 76:217–225

    Article  CAS  Google Scholar 

  17. Aldom JE, Chagla AH (1995) Recovery of Cryptosporidium oocysts from water by membrane filter dissolution method. Lett Appl Microbiol 20:186–187

    Article  CAS  Google Scholar 

  18. Fukatsu T (1999) Acetone preservation: a practical technique for molecular analysis. Mol Ecol 8:1935–1945

    Article  CAS  Google Scholar 

  19. Mangels JI, Cox ME, Lindberg LH (1984) Methanol fixation. An alternative to heat fixation of smears before staining. Diagn Microbiol Infect Dis 2:129–137

    Article  CAS  Google Scholar 

  20. Ganesh A, Lin J (2013) Waterborne human pathogenic viruses of public health concern. Int J Environ Health Res 23:544–564

    Article  Google Scholar 

  21. Gibson KE (2013) Viral pathogens in water: occurrence, public health impact, and available control strategies. Curr Opin Virol 4:50–57

    Article  Google Scholar 

  22. Ikner LA, Gerba CP, Bright KR (2012) Concentration and recovery of viruses from water: a comprehensive review. Food Environ Virol 4:41–67

    Article  Google Scholar 

  23. Maheux AF, Bissonnette L, Boissinot M et al (2011) Method for rapid and sensitive detection of Enterococcus sp. and Enterococcus faecalis/faecium cells in potable water samples. Water Res 45:2342–2354

    Article  CAS  Google Scholar 

  24. Maheux AF, Bérubé È, Boudreau DK et al (2013) Abilities of the mCP agar method and CRENAME alpha toxin-specific real-time PCR assay to detect Clostridium perfringens spores in drinking water. Appl Environ Microbiol 79:7654–7661

    Article  CAS  Google Scholar 

  25. Maheux AF, Huppé V, Bissonnette L et al (2012) Comparative analysis of classical and molecular microbiology methods for the detection of Escherichia coli and Enterococcus spp. in well water. J Environ Monitor 14:2983–2989

    Article  CAS  Google Scholar 

  26. Maheux AF, Boudreau DK, Bisson M-A et al (2014) Molecular method for detection of total coliforms in drinking water samples. Appl Environ Microbiol 80:4074–4084

    Article  Google Scholar 

  27. USEPA (U.S. Environmental Protection Agency) (2006) National primary drinking water regulations: long term 2 enhanced surface water treatment rule; final rule. Fed Register 71:654–786

    Google Scholar 

  28. Picard FJ, Gagnon M, Bernier MR et al (2009) Internal control for nucleic acid testing based on the use of purified Bacillus atrophaeus subsp. globigii spores. J Clin Microbiol 47:751–575

    Article  CAS  Google Scholar 

Download references

Acknowledgments

During her doctoral thesis, Andrée F. Maheux held a scholarship from the Nasivvik Center for Inuit Health and Changing Environment (Canadian Institutes of Health Research) and the work was supported in part by the Canada Foundation for Innovation.

Author contributions: L. Bissonnette has written the chapter in collaboration with A.F. Maheux, while M.G. Bergeron was responsible for its revision.

Conflicts of Interests: The authors declare having no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel G. Bergeron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bissonnette, L., Maheux, A.F., Bergeron, M.G. (2017). CRENAME, A Molecular Microbiology Method Enabling Multiparametric Assessment of Potable/Drinking Water. In: Domingues, L. (eds) PCR. Methods in Molecular Biology, vol 1620. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7060-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7060-5_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7059-9

  • Online ISBN: 978-1-4939-7060-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics