Skip to main content

Studying Protein–Protein Interactions In Planta Using Advanced Fluorescence Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1610))

Abstract

The formation of protein complexes through direct protein–protein interaction is essential for virtually every biological process, and accordingly the ability to determine the interaction properties of specific proteins is important to understand these processes. Förster resonance energy transfer (FRET) measurements are state-of-the-art confocal fluorescence microscopy- and imaging-based techniques that allow the analysis of protein interactions in vivo and in planta, in specific compartments of single cells or tissues. Here we provide a step-by-step guide to perform FRET measurements by acceptor photobleaching (APB) and fluorescence lifetime imaging microscopy (FLIM) in the plant expression system Nicotiana benthamiana.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74(5):2702–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys 2(1–2):55–75

    Article  Google Scholar 

  3. Albertazzi L, Arosio D, Marchetti L, Ricci F, Beltram F (2009) Quantitative FRET analysis with the E(0)GFP-mCherry fluorescent protein pair. Photochem Photobiol 85(1):287–297. doi:10.1111/j.1751–1097.2008.00435.x

    Article  CAS  PubMed  Google Scholar 

  4. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21(11):1387–1395. doi:10.1038/Nbt896

    Article  CAS  PubMed  Google Scholar 

  5. Jares-Erijman EA, Jovin TM (2006) Imaging molecular interactions in living cells by FRET microscopy. Curr Opin Chem Biol 10(5):409–416. doi:10.1016/j.cbpa.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  6. Bastiaens PIH, Jovin TM (1996) Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: fluorescent-labeled protein kinase C beta I. Proc Natl Acad Sci U S A 93(16):8407–8412. doi:10.1073/pnas.93.16.8407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gadella TWJ, Jovin TM, Clegg RM (1993) Fluorescence lifetime imaging microscopy (FLIM)—spatial-resolution of microstructures on the nanosecond time-scale. Biophys Chem 48(2):221–239. doi:10.1016/0301–4622(93)85012–7

    Article  CAS  Google Scholar 

  8. Somssich M, Ma Q, Weidtkamp-Peters S, Stahl Y, Felekyan S, Bleckmann A, Seidel CAM, Simon R (2015) Real-time dynamics of peptide ligand-dependent receptor complex formation in planta. Sci Signal 8(388):ra76. doi:10.1126/scisignal.aab0598

    Article  PubMed  Google Scholar 

  9. Bracha-Drori K, Schichrur K, Katz A, Oliva M, Angelovici R, Yalovsky S, Ohad N (2005) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J 42(5):781–781. doi:10.1111/j.1365-313X.2005.02444.x

    Article  CAS  Google Scholar 

  10. Fields S, Song OK (1989) A novel genetic system to detect protein protein interactions. Nature 340(6230):245–246. doi:10.1038/340245a0

    Article  CAS  PubMed  Google Scholar 

  11. Zuo JR, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24(2):265–273. doi:10.1046/j.1365-313x.2000.00868.x

    Article  CAS  PubMed  Google Scholar 

  12. Bleckmann A, Weidtkamp-Peters S, Seidel CAM, Simon R (2010) Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152(1):166–176. doi:10.1104/pp.109.149930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qu F, Morris TJ (2002) Efficient infection of Nicotiana benthamiana by Tomato bushy stunt virus is facilitated by the coat protein and maintained by p19 through suppression of gene silencing. Mol Plant Microbe Interact 15(3):193–202. doi:10.1094/Mpmi.2002.15.3.193

    Article  CAS  PubMed  Google Scholar 

  14. Koncz C, Schell J (1986) The promoter of Tl-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204(3):383–396. doi:10.1007/Bf00331014

    Article  CAS  Google Scholar 

  15. Karpova TS, Baumann CT, He L, Wu X, Grammer A, Lipsky P, Hager GL, McNally JG (2003) Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J Microsc 209:56–70. doi:10.1046/j.1365–2818.2003.01100.x

    Article  CAS  PubMed  Google Scholar 

  16. Zambryski P, Holsters M, Kruger K, Depicker A, Schell J, Vanmontagu M, Goodman HM (1980) Tumor DNA-structure in plant-cells transformed by A. tumefaciens. Science 209(4463):1385–1391. doi:10.1126/science.6251546

    Article  CAS  PubMed  Google Scholar 

  17. Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10(11):1788–1795. doi:10.1101/Gr.143000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bahassi EM, O’Dea MH, Allali N, Messens J, Gellert M, Couturier M (1999) Interactions of CcdB with DNA gyrase—inactivation of GyrA, poisoning of the gyrase-DNA complex, and the antidote action of CcdA. J Biol Chem 274(16):10936–10944. doi:10.1074/jbc.274.16.10936

    Article  CAS  PubMed  Google Scholar 

  19. Loake GJ, Ashby AM, Shaw CH (1988) Attraction of Agrobacterium tumefaciens C58c1 towards sugars involves a highly sensitive chemotaxis system. J Gen Microbiol 134:1427–1432

    CAS  Google Scholar 

  20. Schrammeijer B, Beijersbergen A, Idler KB, Melchers LS, Thompson DV, Hooykaas PJJ (2000) Sequence analysis of the vir-region from Agrobacterium tumefaciens octopine Ti plasmid pTi15955. J Exp Bot 51(347):1167–1169. doi:10.1093/jexbot/51.347.1167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. S. and R. S. thank Petra Žádníková and Maike Breiden for helpful comments and discussion of the manuscript and the CAi of the HHU for technical support. This work was funded by the D. F. G. through the Exc1028 (CEPLAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Simon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Somssich, M., Simon, R. (2017). Studying Protein–Protein Interactions In Planta Using Advanced Fluorescence Microscopy. In: Busch, W. (eds) Plant Genomics. Methods in Molecular Biology, vol 1610. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7003-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7003-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7001-8

  • Online ISBN: 978-1-4939-7003-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics