Skip to main content

Large-Scale Phenotyping of Root Traits in the Model Legume Lotus japonicus

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1610))

Abstract

Plants are sessile organisms that can tune their body architecture to the environment. This is very pronounced in their root system. In particular, nutrient availability strongly influences the architecture of the root system; depending on the abundance of specific nutrients, root growth rates and lateral root number are modulated. The extent of these effects is important for plant adaptation and has a major impact on plant fitness. However, the assessment of quantitative effects on a scale large enough for identifying genes and variants using quantitative genetics is difficult, and well-developed methods have been largely restricted to the model species Arabidopsis thaliana. In this chapter, we present a protocol for high-throughput phenotyping of early root traits in the model legume plant Lotus japonicus. This species allows for the study of important root-associated traits that are not present in Arabidopsis, such as symbioses with nitrogen-fixing Rhizobia and arbuscular mycorrhizal fungi. The methods described in this chapter can be used in the context of reverse and forward genetics approaches to dissect the genetic basis of root growth in legumes.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Handberg K, Stougaard J (1992) Lotus Japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496. doi:10.1111/j.1365-313X.1992.00487.x

    Article  Google Scholar 

  2. Madsen EB, Madsen LH, Radutoiu S et al (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640. doi:10.1038/nature02045

    Article  CAS  PubMed  Google Scholar 

  3. Radutoiu S, Madsen LH, Madsen EB et al (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592. doi:10.1038/nature02039

    Article  CAS  PubMed  Google Scholar 

  4. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263. doi:10.1038/nrmicro2990

    Article  CAS  PubMed  Google Scholar 

  5. Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular Mycorrhiza Symbiosis. Annu Rev Cell Dev Biol 29:593–617. doi:10.1146/annurev-cellbio-101512-122413

    Article  CAS  PubMed  Google Scholar 

  6. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250. doi:10.1146/annurev-arplant-042110-103846

    Article  CAS  PubMed  Google Scholar 

  7. Lerouge P, Roche P, Faucher C et al (1990) Symbiotic host-specificity of rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784. doi:10.1038/344781a0

    Article  CAS  PubMed  Google Scholar 

  8. Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195. doi:10.1038/46058

    Article  CAS  PubMed  Google Scholar 

  9. Slovak R, Göschl C, Su X et al (2014) A scalable open-source pipeline for large-scale root phenotyping of Arabidopsis. Plant Cell 26:2390–2403. doi:10.1105/tpc.114.124032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Slovak R, Göschl C, Seren Ü, Busch W (2015) Genome-wide association mapping in plants exemplified for root growth in Arabidopsis thaliana. In: Alonso JM, Stepanova AN (eds) Plant functional genomics. Springer, New York, pp 343–357

    Google Scholar 

  11. Fukai E, Soyano T, Umehara Y et al (2012) Establishment of a Lotus Japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. Plant J 69:720–730. doi:10.1111/j.1365-313X.2011.04826.x

    Article  CAS  PubMed  Google Scholar 

  12. Urbański DF, Małolepszy A, Stougaard J, Andersen SU (2012) Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus Japonicus. Plant J 69:731–741. doi:10.1111/j.1365-313X.2011.04827.x

    Article  PubMed  Google Scholar 

  13. Małolepszy A, Mun T, Sandal N et al (2016) The LORE1 insertion mutant resource. Plant J. doi:10.1111/tpj.13243

    PubMed  Google Scholar 

  14. Kelly S, Sullivan J, Ronson C et al (2014) Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain R7A. Stand Genomic Sci 9:6. doi:10.1186/1944–3277–9-6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  16. Seren Ü, Vilhjálmsson BJ, Horton MW et al (2012) GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell 24:4793–4805. doi:10.1105/tpc.112.108068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Broughton WJ, Dilworth MJ. Control of leghaemoglobin synthesis in snake beans. Biochem J. 1971;125:1075–1080

    Google Scholar 

Download references

Acknowledgments

We are grateful to Stig Anderson (Aarhus University) for materials, help, and collaboration. We thank Matt Watson for manuscript editing. This work was supported by funds from the Austrian Academy of Sciences through the Gregor Mendel Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Busch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Giovannetti, M., Małolepszy, A., Göschl, C., Busch, W. (2017). Large-Scale Phenotyping of Root Traits in the Model Legume Lotus japonicus . In: Busch, W. (eds) Plant Genomics. Methods in Molecular Biology, vol 1610. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7003-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7003-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7001-8

  • Online ISBN: 978-1-4939-7003-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics