Skip to main content

One-Step Preservation and Decalcification of Bony Tissue for Molecular Profiling

  • Protocol
  • First Online:
Molecular Profiling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1606))

Abstract

Bone metastasis from primary cancer sites creates diagnostic and therapeutic challenges. Calcified bone is difficult to biopsy due to tissue hardness and patient discomfort, thus limiting the frequency and availability of bone/bone marrow biopsy material for molecular profiling. In addition, bony tissue must be demineralized (decalcified) prior to histomorphologic analysis. Decalcification processes rely on three main principles: (a) solubility of calcium salts in an acid, such as formic or nitric acid; (b) calcium chelation with ethylenediaminetetraacetic acid (EDTA); or (c) ion-exchange resins in a weak acid. A major roadblock in molecular profiling of bony tissue has been the lack of a suitable demineralization process that preserves histomorphology of calcified and soft tissue elements while also preserving phosphoproteins and nucleic acids. In this chapter, we describe general issues relevant to specimen collection and preservation of osseous tissue for molecular profiling. We provide two protocols: (a) one-step preservation of tissue histomorphology and proteins and posttranslational modifications, with simultaneous decalcification of bony tissue, and (b) ethanol-based tissue processing for TheraLin-fixed bony tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Espina V, Mueller C (2012) Reduction of preanalytical variability in specimen procurement for molecular profiling. Methods Mol Biol 823:49–57. doi:10.1007/978-1-60327-216-2_4

    Article  CAS  PubMed  Google Scholar 

  2. Becker KF (2015) Using tissue samples for proteomic studies-critical considerations. Proteomics Clin Appl 9(3–4):257–267. doi:10.1002/prca.201400106

    Article  CAS  PubMed  Google Scholar 

  3. Boellner S, Becker KF (2015) Recent progress in protein profiling of clinical tissues for next-generation molecular diagnostics. Expert Rev Mol Diagn 15(10):1277–1292. doi:10.1586/14737159.2015.1070098

    Article  CAS  PubMed  Google Scholar 

  4. Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B, Banks S, Deng J, VanMeter AJ, Geho DH, Pastore L, Sennesh J, Petricoin EF 3rd, Liotta LA (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7(10):1998–2018. doi:10.1074/mcp.M700596-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Espina V, Mueller C, Edmiston K, Sciro M, Petricoin EF, Liotta LA (2009) Tissue is alive: new technologies are needed to address the problems of protein biomarker pre-analytical variability. Proteomics Clin Appl 3(8):874–882. doi:10.1002/prca.200800001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gundisch S, Annaratone L, Beese C, Drecol E, Marchio C, Quaglino E, Sapino A, Becker KF, Bussolati G (2015) Critical roles of specimen type and temperature before and during fixation in the detection of phosphoproteins in breast cancer tissues. Lab Invest 95(5):561–571. doi:10.1038/labinvest.2015.37

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gundisch S, Slotta-Huspenina J, Verderio P, Ciniselli CM, Pizzamiglio S, Schott C, Drecoll E, Viertler C, Zatloukal K, Kap M, Riegman P, Esposito I, Specht K, Babaryka G, Asslaber M, Bodo K, den Bakker M, den Hollander J, Fend F, Neumann J, Reu S, Perren A, Langer R, Lugli A, Becker I, Richter T, Kayser G, May AM, Carneiro F, Lopes JM, Sobin L, Hofler H, Becker KF (2014) Evaluation of colon cancer histomorphology: a comparison between formalin and PAXgene tissue fixation by an international ring trial. Virchows Arch 465(5):509–519. doi:10.1007/s00428-014-1624-4

    Article  PubMed  Google Scholar 

  8. Lim MD, Dickherber A, Compton CC (2011) Before you analyze a human specimen, think quality, variability, and bias. Anal Chem 83(1):8–13. doi:10.1021/ac1018974

    Article  CAS  PubMed  Google Scholar 

  9. Poste G (2011) Bring on the biomarkers. Nature 469(7329):156–157. doi:10.1038/469156a

    Article  CAS  PubMed  Google Scholar 

  10. Collins FS, Tabak LA (2014) Policy: NIH plans to enhance reproducibility. Nature 505(7485):612–613

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mueller C, Edmiston KH, Carpenter C, Gaffney E, Ryan C, Ward R, White S, Memeo L, Colarossi C, Petricoin EF 3rd, Liotta LA, Espina V (2011) One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens. PLoS One 6(8):e23780. doi:10.1371/journal.pone.0023780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suva LJ, Brander BE, Makhoul I (2011) Update on bone-modifying agents in metastatic breast cancer. Nat Rev Endocrinol 7(7):380–381. doi:10.1038/nrendo.2011.80

    Article  PubMed  Google Scholar 

  13. Croucher PI, McDonald MM, Martin TJ (2016) Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 16(6):373–386. doi:10.1038/nrc.2016.44

    Article  CAS  PubMed  Google Scholar 

  14. Carter RZ, Micocci KC, Natoli A, Redvers RP, Paquet-Fifield S, Martin AC, Denoyer D, Ling X, Kim SH, Tomasin R, Selistre-de-Araujo H, Anderson RL, Pouliot N (2015) Tumour but not stromal expression of beta3 integrin is essential, and is required early, for spontaneous dissemination of bone-metastatic breast cancer. J Pathol 235(5):760–772. doi:10.1002/path.4490

    Article  CAS  PubMed  Google Scholar 

  15. Brown RS, Edwards J, Dogan A, Payne H, Harland SJ, Bartlett JM, Masters JR (2002) Amplification of the androgen receptor gene in bone metastases from hormone-refractory prostate cancer. J Pathol 198(2):237–244. doi:10.1002/path.1206

    Article  CAS  PubMed  Google Scholar 

  16. Wu AC, He Y, Broomfield A, Paatan NJ, Harrington BS, Tseng HW, Beaven EA, Kiernan DM, Swindle P, Clubb AB, Levesque JP, Winkler IG, Ling MT, Srinivasan B, Hooper JD, Pettit AR (2016) CD169(+) macrophages mediate pathological formation of woven bone in skeletal lesions of prostate cancer. J Pathol 239(2):218–230. doi:10.1002/path.4718

    Article  CAS  PubMed  Google Scholar 

  17. Chiechi A, Novello C, Magagnoli G, Petricoin EF 3rd, Deng J, Benassi MS, Picci P, Vaisman I, Espina V, Liotta LA (2013) Elevated TNFR1 and serotonin in bone metastasis are correlated with poor survival following bone metastasis diagnosis for both carcinoma and sarcoma primary tumors. Clin Cancer Res 19(9):2473–2485. doi:10.1158/1078-0432.CCR-12-3416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Conti A, Espina V, Chiechi A, Magagnoli G, Novello C, Pazzaglia L, Quattrini I, Picci P, Liotta LA, Benassi MS (2014) Mapping protein signal pathway interaction in sarcoma bone metastasis: linkage between rank, metalloproteinases turnover and growth factor signaling pathways. Clin Exp Metastasis 31(1):15–24. doi:10.1007/s10585-013-9605-6

    Article  CAS  PubMed  Google Scholar 

  19. Morris RE Jr, Benton RS (1956) Studies on demineralization of bone. I The basic factors of demineralization. Am J Clin Pathol 26(6):579–595

    Article  CAS  PubMed  Google Scholar 

  20. Morris RE Jr, Benton RS (1956) Studies on demineralization of bone. II The effect of electrolytic technics in demineralization. Am J Clin Pathol 26(6):596–603

    Article  CAS  PubMed  Google Scholar 

  21. Walsh L, Freemont AJ, Hoyland JA (1993) The effect of tissue decalcification on mRNA retention within bone for in-situ hybridization studies. Int J Exp Pathol 74(3):237–241

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Alers JC, Krijtenburg PJ, Vissers KJ, van Dekken H (1999) Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization. EDTA is highly preferable to a routinely used acid decalcifier. J Histochem Cytochem 47(5):703–710

    Article  CAS  PubMed  Google Scholar 

  23. Bass BP, Engel KB, Greytak SR, Moore HM (2014) A review of preanalytical factors affecting molecular, protein, and morphological analysis of formalin-fixed, paraffin-embedded (FFPE) tissue: how well do you know your FFPE specimen? Arch Pathol Lab Med 138(11):1520–1530. doi:10.5858/arpa.2013-0691-RA

    Article  PubMed  Google Scholar 

  24. Case NM (1953) The use of a cation exchange resin in decalcification. Stain Technol 28(3):155–158

    Article  CAS  PubMed  Google Scholar 

  25. Morris RE Jr, Benton RS (1956) Studies on demineralization of bone. III The effect of ion exchange resins and versenate in demineralization. Am J Clin Pathol 26(7):771–777

    Article  CAS  PubMed  Google Scholar 

  26. Cleland TP, Vashishth D (2015) Bone protein extraction without demineralization using principles from hydroxyapatite chromatography. Anal Biochem 472:62–66. doi:10.1016/j.ab.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  27. Benton RS, Morris RE Jr (1956) Studies on demineralization of bone. IV Evaluation of morphology and staining characteristics of tissues after demineralization. Am J Clin Pathol 26(8):882–898

    Article  CAS  PubMed  Google Scholar 

  28. Bindhu P, Krishnapillai R, Thomas P, Jayanthi P (2013) Facts in artifacts. J Oral Maxillofac Pathol 17(3):397–401. doi:10.4103/0973-029X.125206

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kiernan JA (2008) Histological and histochemical methods theory and practice, 4th edn. Scion Publishing Ltd., Oxfordshire

    Google Scholar 

  30. MilesLaboratories (1989) Tissue-Tek Vacuum Infiltration Processor Operating Manual V.I.P 1000, 2000, 3000. 2nd edn. Ames, Division of Miles Laboratories, Inc., USA

    Google Scholar 

Download references

Acknowledgments

We express our deepest gratitude to Antonella Chiechi, Ph.D., for facilitating experiments for evaluating fixation and decalcification methods with human bone specimens. This work was supported in part by the National Institutes of Health Innovative Molecular Analysis Technologies (IMAT) program through a grant to L. Liotta and V. Espina (1R33CA157403-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudius Mueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mueller, C., Harpole, M.G., Espina, V. (2017). One-Step Preservation and Decalcification of Bony Tissue for Molecular Profiling. In: Espina, V. (eds) Molecular Profiling. Methods in Molecular Biology, vol 1606. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6990-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6990-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6989-0

  • Online ISBN: 978-1-4939-6990-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics