Skip to main content

Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1598))

Abstract

Photoaffinity labeling techniques have been used for decades to identify drug binding sites and to study the structural biology of allosteric transitions in transmembrane proteins including pentameric ligand-gated ion channels (pLGIC). In a typical photoaffinity labeling experiment, to identify drug binding sites, UV light is used to introduce a covalent bond between a photoreactive ligand (which upon irradiation at the appropriate wavelength converts to a reactive intermediate) and amino acid residues that lie within its binding site. Then protein chemistry and peptide microsequencing techniques are used to identify these amino acids within the protein primary sequence. These amino acid residues are located within homology models of the receptor to identify the binding site of the photoreactive probe. Molecular modeling techniques are then used to model the binding of the photoreactive probe within the binding site using docking protocols. Photoaffinity labeling directly identifies amino acids that contribute to drug binding sites regardless of their location within the protein structure and distinguishes them from amino acids that are only involved in the transduction of the conformational changes mediated by the drug, but may not be part of its binding site (such as those identified by mutational studies). Major limitations of photoaffinity labeling include the availability of photoreactive ligands that faithfully mimic the properties of the parent molecule and protein preparations that supply large enough quantities suitable for photoaffinity labeling experiments. When the ligand of interest is not intrinsically photoreactive, chemical modifications to add a photoreactive group to the parent drug, and pharmacological evaluation of these chemical modifications become necessary. With few exceptions, expression and affinity-purification of proteins are required prior to photolabeling. Methods to isolate milligram quantities of highly enriched pLGIC suitable for photoaffinity labeling experiments have been developed. In this chapter, we discuss practical aspects of experimental strategies to identify allosteric modulator binding sites in pLGIC using photoaffinity labeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Corringer PJ, Poitevin F, Prevost MS, Sauguet L, Delarue M, Changeux JP (2012) Structure and pharmacology of pentameric receptor channels: from bacteria to brain. Structure 20:941–956

    Article  CAS  PubMed  Google Scholar 

  2. Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol 346:967–989

    Article  CAS  PubMed  Google Scholar 

  3. Hilf RJC, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452:375–379

    Article  CAS  PubMed  Google Scholar 

  4. Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux J-P, Delarue M, Corringer P-J (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457:111–114

    Article  CAS  PubMed  Google Scholar 

  5. Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474:54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller PS, Aricescu AR (2014) Crystal structure of a human GABAA receptor. Nature 512:270–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hassaine G, Deluz C, Grasso L, Wyss R, Tol MB, Hovius R, Graff A, Stahlberg H, Tomizaki T, Desmyter A, Moreau C, Li XD, Poitevin F, Vogel H, Nury H (2014) X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512:276–281

    Article  CAS  PubMed  Google Scholar 

  8. Jensen AA, Frolund B, Lijefors T, Krogsgaard-Larsen P (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 48:4705–4745

    Article  CAS  PubMed  Google Scholar 

  9. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux J-P (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 8:733–750

    Article  CAS  PubMed  Google Scholar 

  10. Hurst R, Rollema H, Bertrand D (2013) Nicotinic acetylcholine receptors: From basic science to therapeutics. Pharmacol Ther 137:22–54

    Article  CAS  PubMed  Google Scholar 

  11. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Sideri S, Zouridakis M, Tzartos SJ (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J 274:3799–3845

    Article  CAS  PubMed  Google Scholar 

  12. Rudolph U, Antkowiak B (2004) Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5:709–720

    Article  CAS  PubMed  Google Scholar 

  13. Rudolph U, Knoflach F (2011) Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discov 10:685–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu ZS, Cheng H, Jiang Y, Melcher K, Xu HE (2015) Ion channels gated by acetylcholine and serotonin: structures, biology, and drug discovery. Acta Pharmacol Sin 36:895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies PA (2011) Allosteric modulation of the 5-HT3 receptor. Curr Opin Pharmacol 11:75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burgos CF, Yévenes GE, Agudo LG (2016) Structure and pharmacological modulation of inhibitory glycine receptors. Mol Pharmacol 90:318–325

    Google Scholar 

  17. Meier J, NeunierDurmort C, Forest C, Triller A, Vannier C (2000) Formation of glycine receptor clusters and their accumulation at synapses. J Cell Sci 113:2783–2795

    CAS  PubMed  Google Scholar 

  18. Dutertre S, Drwal M, Laube B, Betz H (2012) Probing the pharmacological properties of distinct subunit interfaces within heteromeric glycine receptors reveals a functional ββ agonist-binding site. J Neurochem 122:38–47

    Article  CAS  PubMed  Google Scholar 

  19. Gopalakrishnan M, Bertrand D, Williams M (2007) Nicotinic acetylcholine receptors as therapeutic targets: emerging frontiers in basic research and clinical science. Biochem Pharmacol 74:1091

    Article  CAS  PubMed  Google Scholar 

  20. Williams DK, Wang J, Papke RL (2011) Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations. Biochem Pharmacol 82:915–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Uteshev VV (2014) The therapeutic promise of positive allosteric modulation of nicotinic receptors. Eur J Pharmacol 727:181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moroni M, Zwart R, Sher E, Cassels BK, Bermudez I (2006) α4β2 nicotinic receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Mol Pharmacol 70:755–768

    Article  CAS  PubMed  Google Scholar 

  23. Young GT, Zwart R, Walker AS, Sher E, Millar NS (2008) Potentiation of a7 nicotinic acetylcholine receptors via an allosteric transmembrane site. Proc Natl Acad Sci USA 105:14686–14691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seo S, Henry JT, Lewis AH, Levandoski MM (2009) The positive allosteric modulator morantel binds at noncanonical subunit interfaces of neuronal nicotinic acetylcholine receptors. J Neurosci 29:8734–8742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamouda AK, Stewart DS, Husain SS, Cohen JB (2011) Multiple transmembrane binding sites for p-Trifluoromethyldiazirinyl-etomidate, a photoreactive torpedo nicotinic acetylcholine receptor allosteric inhibitor. J Biol Chem 286:20466–20477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hamouda AK, Kimm T, Cohen JB (2013) Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J Neurosci 33:485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Olsen JA, Ahring PK, Kastrup JS, Gajhede M, Balle T (2014) Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at a4b2 nicotinic acetylcholine receptors. J Biol Chem 289:24911–24921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Timmermann DB, Grønlien JH, Kohlhaas KL, Nielsen E, Dam E, Jørgensen TD, Ahring PK, Peters D, Holst D, Christensen JK, Malysz J, Briggs CA, Gopalakrishnan M, Olsen GM (2007) An allosteric modulator of the a7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J Pharmacol Exp Ther 323:294–307

    Article  CAS  PubMed  Google Scholar 

  29. Timmermann DB, Sandager-Nielsen K, Dyhring T, Smith M, Jacobsen AM, Nielsen EO, Grunnet M, Christensen JK, Peters D, Kohlhaas K, Olsen GM, Ahring PK (2012) Augmentation of cognitive function by NS9283, a stoichiometry-dependent positive allosteric modulator of alpha 2- and alpha 4-containing nicotinic acetylcholine receptors. Br J Pharmacol 167:164–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu X (2013) Positive allosteric modulation of alpha 4 beta 2 nicotinic acetylcholine receptors as a new approach to smoking reduction: evidence from a rat model of nicotine self-administration. Psychopharmacology (Berl) 230:203–213

    Article  CAS  Google Scholar 

  31. Bagdas D, AlSharari SD, Freitas K, Tracy M, Damaj MI (2015) The role of alpha5 nicotinic acetylcholine receptors in mouse models of chronic inflammatory and neuropathic pain. Biochem Pharmacol 97:590–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Potasiewicz A, Kos T, Ravazzini F, Puia G, Arias HR, Popik P, Nikiforuk A (2015) Pro-cognitive activity in rats of 3-furan-2-yl-N-p-tolyl-acrylamide, a positive allosteric modulator of the a7 nicotinic acetylcholine receptor. Br J Pharmacol 172:5123–5135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abbas M, Rahman S (2016) Brain alpha-7 nicotinic acetylcholine receptor positive allosteric modulator attenuates mechanical allodynia and hyperalgesia in a mouse model of neuroinflammatory pain. J Pain 17:S75

    Article  CAS  PubMed  Google Scholar 

  34. Woll KA, Dailey WP, Brannigan G, Eckenhoff RG (2016) Shedding light on anesthetic mechanisms: application of photoaffinity ligands. Anesth Analg 132:1253–1262

    Google Scholar 

  35. Vodovozova EL (2007) Photoaffinity labeling and its application in structural biology. Biochemistry (Moscow) 72:1–20

    Article  CAS  Google Scholar 

  36. Das J (2011) Aliphatic diazirines as photoaffinity probes for proteins : recent developments. Chem Rev 111:4405–4417

    Google Scholar 

  37. Hamouda AK, Jayakar SS, Chiara DC, Cohen JB (2014) Photoaffinity labeling of nicotinic receptors: diversity of drug binding sites! J Mol Neurosci 53:480–486

    Article  CAS  PubMed  Google Scholar 

  38. Middleton RE, Cohen JB (1991) Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: [3H]-nicotine as an agonist photoaffinity label. Biochemistry 30:6987–6997

    Article  CAS  PubMed  Google Scholar 

  39. Dennis M, Giraudat J, Kotzyba-Hibert F, Goeldner M, Hirth C, Chang J-Y, Lazure C, Chrétien M, Changeux J-P (1988) Amino acids of the Torpedo marmorata acetylcholine receptor α-subunit labeled by a photoaffinity ligand for the acetylcholine binding site. Biochemistry 27:2346–2357

    Article  CAS  PubMed  Google Scholar 

  40. Chiara DC, Cohen JB (1997) Identification of amino acids contributing to high and low affinity d-Tubocurarine sites in the Torpedo nicotinic acetylcholine receptor. J Biol Chem 272:32940–32950

    Article  CAS  PubMed  Google Scholar 

  41. Wang D, Chiara DC, Xie Y, Cohen JB (2000) Probing the structure of the nicotinic acetylcholine receptor with 4- benzoylbenzoylcholine, a novel photoaffinity competitive antagonist. J Biol Chem 275:28666–28674

    Article  CAS  PubMed  Google Scholar 

  42. Chiara DC, Trinidad JC, Wang D, Ziebell MR, Sullivan D, Cohen JB (2003) Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-Diazirin-3-yl]Benzoylcholine, a novel photoaffinity antagonist. Biochemistry 42:271–283

    Article  CAS  PubMed  Google Scholar 

  43. Nirthanan S, Ziebell MR, Chiara DC, Hong F, Cohen JB (2005) Photolabeling the Torpedo Nicotinic acetylcholine receptor with 4-Azido-2,3,5,6-tetrafluorobenzoylcholine, a partial agonist. Biochemistry 44:13447–13456

    Article  CAS  PubMed  Google Scholar 

  44. Hamouda AK, Jin XC, Sanghvi M, Srivastava S, Pandhare A, Duddempudi PK, Steinbach JH, Blanton MP (2009) Photoaffinity labeling the agonist binding domain of α4β4 and α4β2 neuronal nicotinic acetylcholine receptors with [I-125]epibatidine and 5[I-125]A-85380. Biochim Biophys Acta 1788:1987–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Srivastava S, Hamouda AK, Pandhare A, Duddempudi PK, Sanghvi M, Cohen JB, Blanton MP (2009) [3H]Epibatidine photolabels non-equivalent amino acids in the agonist binding site of Torpedo and a4b2 nicotinic acetylcholine receptors. J Biol Chem 284:24939–24947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giraudat J, Dennis M, Heidmann T, Chang J-Y, Changeux J-P (1986) Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: Serine-262 of the δ subunit is labeled by [3H]chlorpromazine. Proc Natl Acad Sci USA 83:2719–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Revah F, Galzi JL, Giraudat J, Haumont P-Y, Lederer F, Changeux J-P (1990) The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor γ subunit: implications for the α-helical organization of regions MII and for the structure of the ion channel. Proc Natl Acad Sci USA 87:4675–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. White BH, Cohen JB (1992) Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic non-competitive antagonist. J Biol Chem 267:15770–15783

    CAS  PubMed  Google Scholar 

  49. Hamouda AK, Chiara DC, Blanton MP, Cohen JB (2008) Probing the structure of the affinity-purified and lipid-reconstituted Torpedo nicotinic acetylcholine receptor. Biochemistry 47:12787–12794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chiara DC, Hamouda AK, Ziebell MR, Mejia LA, Garcia G, Cohen JB (2009) [3H]Chlorpromazine photolabeling of the Torpedo nicotinic acetylcholine receptor identifies two state-dependent binding sites in the ion channel. Biochemistry 48:10066–10077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sawyer GW, Chiara DC, Olsen RW, Cohen JB (2002) Identification of the bovine γ-aminobutyric acid type A receptor α subunit residues photolabeled by the imidazobenzodiazepine [3H]Ro15-4513. J Biol Chem 277:50036–50045

    Article  CAS  PubMed  Google Scholar 

  52. Arevalo E, Chiara DC, Forman SA, Cohen JB, Miller KW (2005) Gating-enhanced accessibility of hydrophobic sites within the transmembrane region of the nicotinic acetylcholine receptor’s δ-subunit—A time-resolved photolabeling study. J Biol Chem 280:13631–13640

    Article  CAS  PubMed  Google Scholar 

  53. Li G-D, Chiara DC, Sawyer GW, Husain SS, Olsen RW, Cohen JB (2006) Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J Neurosci 26:11599–11605

    Article  CAS  PubMed  Google Scholar 

  54. Nirthanan S, Garcia GI, Chiara DC, Husain SS, Cohen JB (2008) Identification of binding sites in the nicotinic acetylcholine receptor for TDBzl-etomidate, a photoreactive positive allosteric effector. J Biol Chem 283:22051–22062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamodo IH, Chiara DC, Cohen JB, Miller KW (2010) Conformational changes in the nicotinic acetylcholine receptor during gating and desensitization. Biochemistry 49:156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chiara DC, Dostalova Z, Jayakar SS, Zhou X, Miller KW, Cohen JB (2012) Mapping general anesthetic binding site(s) in human α1β3 γ-Aminobutyric acid type A receptors with [3H]TDBzl-etomidate, a photoreactive etomidate analogue. Biochemistry 51:836–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jayakar SS, Dailey WP, Eckenhoff RG, Cohen JB (2013) Identification of propofol binding sites in a nicotinic acetylcholine receptor with a photoreactive propofol analog. J Biol Chem 288:6178–6189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chiara DC, Yamodo HI, Miller KW, Cohen JB (2013) Structural differences in the nicotinic acetylcholine receptor (nACHR) ion channel between open and desensitized states revealed by time-resolved photolabeling with [3H]Chlorpromazine (CPZ). Biophys J 100:275a

    Article  Google Scholar 

  59. Jayakar SS, Zhou X, Chiara DC, Dostalova Z, Savechenkov PY, Bruzik KS, Dailey W, Miller KW, Eckenhoff RG, Cohen JB (2014) Multiple propofol-binding sites in a γ-aminobutyric acid type A receptor (GABAAR) identified using a photoreactive propofol analog. J Biol Chem 289:27456–27468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jayakar SS, Zhou X, Savechenkov PY, Chiara DC, Desai R, Bruzik KS, Miller KW, Cohen JB (2015) Positive and negative allosteric modulation of an α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor by binding to a site in the transmembrane domain at the γ+-β- interface. J Biol Chem 290:23432–23446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abramson SN, Culver P, Klines T, Li Y, Guest P (1988) Lophotoxin and related coral toxins covalently label the α-subunit of the nicotinic acetylcholine receptor. J Biol Chem 263:18568–18573

    CAS  PubMed  Google Scholar 

  62. Gallagher MJ, Cohen JB (1999) Identification of amino acids of the torpedo nicotinic acetylcholine receptor contributing to the binding site for the noncompetitive antagonist [H-3]tetracaine. Mol Pharmacol 56:300–307

    CAS  PubMed  Google Scholar 

  63. Schrattenholz A, Godovac-Zimmermann J, Schafer HJ, Albuquerque EX, Maelicke A (1993) Photoaffinity labeling of Torpedo acetylcholine receptor by physostigmine. Eur J Biochem 216:671–677

    Article  CAS  PubMed  Google Scholar 

  64. Hamouda AK, Wang ZJ, Stewart DS, Jain AD, Glennon RA, Cohen JB (2015) Desformylflustrabromine (dFBr) and [3H]dFBr-Labeled Binding Sites in a Nicotinic Acetylcholine Receptor. Mol Pharmacol 88:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hamouda AK, Deba F, Wang ZJ, Cohen JB (2016) Photolabeling a nicotinic acetylcholine receptor (nAChR) with an (α4)3(β2)2 nAChR-selective positive allosteric modulator. Mol Pharmacol 89:575–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brunner J (1993) New photolabeling and crosslinking methods. Annu Rev Biochem 62:483–514

    Article  CAS  PubMed  Google Scholar 

  67. Kotzyba-Hibert F, Kapfer I, Goeldner M (1995) Recent trends in photoaffinity labeling. Angew Chem Int Ed 34:1296–1312

    Article  CAS  Google Scholar 

  68. Clement M, Martin SS, Beaulieu ME, Chamberland C, Lavigne P, Leduc R, Guillemette G, Escher E (2005) Determining the environment of the ligand binding pocket of the human angiotensin II type I (HAT(1)) receptor using the methionine proximity assay. J Biol Chem 280:27121–27129

    Article  CAS  PubMed  Google Scholar 

  69. Husain SS, Ziebell MR, Ruesch D, Hong F, Arevalo E, Kosterlitz JA, Olsen RW, Forman SA, Cohen JB, Miller KW (2003) 2-(3-methyl-3H-diaziren-3-yl) ethyl 1-(1-phenylethyl)-1H-imidazole-5- carboxylate: a derivative of the stereoselective general anesthetic etomidate for photolabeling ligand-gated ion channels. J Med Chem 46:1257–1265

    Article  CAS  PubMed  Google Scholar 

  70. Ziebell MR, Nirthanan S, Husain SS, Miller KW, Cohen JB (2004) Identification of binding sites in the nicotinic acetylcholine receptor for [H-3]azietomidate, a photoactivatable general anesthetic. J Biol Chem 279:17640–17649

    Article  CAS  PubMed  Google Scholar 

  71. Hamouda AK, Chiara DC, Sauls D, Cohen JB, Blanton MP (2006) Cholesterol interacts with transmembrane α-helices M1, M3, and M4 of the Torpedo nicotinic acetylcholine receptor: Photolabeling studies using [H-3-]azicholesterol. Biochemistry 45:976–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tomizawa M, Maltby D, Medzihradszky KF, Zhang NJ, Durkin KA, Presley J, Talley TT, Taylor P, Burlingame AL, Casida JE (2007) Defining nicotinic agonist binding surfaces through photoaffinity labeling. Biochemistry 46:8798–8806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Husain SS, Nirthanan S, Ruesch D, Solt K, Cheng Q, Li GD, Arevalo E, Olsen RW, Raines DE, Forman SA, Cohen JB, Miller KW (2006) Synthesis of trifluoromethylaryl diazirine and benzophenone derivatives of etomidate that are potent general anesthetics and effective photolabels for probing sites on ligand-gated ion channels. J Med Chem 49:4818–4825

    Article  CAS  PubMed  Google Scholar 

  74. Hall MA, Xi J, Lor C, Dai S, Pearce R, Dailey WP, Eckenhoff RG (2010) m-Azipropofol (AziPm) a photoactive analogue of the intravenous general anesthetic propofol. J Med Chem 53:5667–5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Savechenkov PY, Zhang X, Chiara DC, Stewart DS, Ge R, Zhou X, Raines DE, Cohen JB, Forman SA, Miller KW, Bruzik KS (2012) Allyl m-Trifluoromethyldiazirine mephobarbital: an unusually potent enantioselective and photoreactive barbiturate general anesthetic. J Med Chem 55:6554–6565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chiara DC, Jayakar SS, Zhou X, Zhang X, Savechenkov PY, Bruzik KS, Miller KW, Cohen JB (2013) Specificity of intersubunit general anesthetic-binding sites in the transmembrane domain of the human α1β3γ2 γ-aminobutyric acid type A (GABAA) receptor. J Biol Chem 288:19343–19357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hamouda AK, Stewart DS, Chiara DC, Savechenkov PY, Bruzik KS, Cohen JB (2014) Identifying barbiturate binding sites in a nicotinic acetylcholine receptor with [3H]Allyl m-Trifluoromethyldiazirine mephobarbital, a photoreactive barbiturate. Mol Pharmacol 85:735–746

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  79. Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  80. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  81. Sobel A, Weber M, Changeux J-P (1977) Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent extracted forms from Torpedo marmorata electric organ. Eur J Biochem 80:215–224

    Article  CAS  PubMed  Google Scholar 

  82. Pedersen SE, Dreyer EB, Cohen JB (1986) Location of ligand binding sites on the nicotinic acetylcholine receptor α-subunit. J Biol Chem 261:13735–13743

    CAS  PubMed  Google Scholar 

  83. Fong TM, McNamee MG (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25:830–840

    Article  CAS  PubMed  Google Scholar 

  84. daCosta CJB, Ogrel AA, McCardy EA, Blanton MP, Baenziger JE (2002) Lipid-protein interactions at the nicotinic acetylcholine receptor—a functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers. J Biol Chem 277:201–208

    Article  CAS  PubMed  Google Scholar 

  85. Hamouda AK, Sanghvi M, Chiara DC, Cohen JB, Blanton MP (2007) Identifying the lipid--protein interface of the α4β2 neuronal nicotinic acetylcholine receptor: hydrophobic photolabeling studies with 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. Biochemistry 46:13837–13846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sanghvi M, Hamouda AK, Davis MI, Morton RA, Srivastava S, Pandhare A, Duddempudi PK, Machu TK, Lovinger DM, Cohen JB, Blanton MP (2009) Hydrophobic photolabeling studies identify the lipid–protein interface of the 5-HT3A receptor. Biochemistry 48:9278–9286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dostalova Z, Liu AP, Zhou XJ, Farmer SL, Krenzel ES, Arevalo E, Desai R, Feinberg-Zadek PL, Davies PA, Yamodo IH, Forman SA, Miller KW (2010) High-level expression and purification of Cys-loop ligand-gated ion channels in a tetracycline-inducible stable mammalian cell line: GABA(A) and serotonin receptors. Protein Sci 19:1728–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dostalova Z, Zhou X, Liu A, Zhang X, Zhang Y, Desai R, Forman SA, Miller KW (2014) Human α1β3γ2L γ-aminobutyric acid type A receptors: high-level production and purification in a functional state. Protein Sci 23:157–166

    Article  CAS  PubMed  Google Scholar 

  89. Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem 252:1102–1106

    CAS  PubMed  Google Scholar 

  90. Blanton MP, Cohen JB (1994) Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry 33:2859–2872

    Article  CAS  PubMed  Google Scholar 

  91. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Google Scholar 

  92. Schagger H (2006) Tricine–SDS-PAGE. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  93. Brauer AW, Oman CL, Margolies MN (1984) Use of ophthalaldehyde to reduce background during automated Edman degradation. Anal Biochem 137:134–142

    Article  CAS  PubMed  Google Scholar 

  94. Leite JF, Blanton MP, Shahgholi M, Dougherty DA, Lester HA (2003) Conformation-dependent hydrophobic photolabeling of the nicotinic receptor: electrophysiology-coordinated photochemistry and mass spectrometry. Proc Nat Acad Sci USA 100:13054–13059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yip GMS, Chen ZW, Edge CJ, Smith EH, Dickinson R, Hohenester E, Townsend RR, Fuchs K, Sieghart W, Evers AS, Franks NP (2013) A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat Chem Biol 9:715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen ZW, Chen LH, Akentieva N, Lichti CF, Darbandi R, Hastings R, Covey DF, Reichert DE, Townsend RR, Evers AS (2012) A neurosteroid analogue photolabeling reagent labels the colchicine-binding site on tubulin: a mass spectrometric analysis. Electrophoresis 33:666–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kinde MN, Bu WM, Chen Q, Xu Y, Eckenhoff RG, Tang P (2016) Common anesthetic-binding site for inhibition of pentameric ligand-gated ion channels. Anesthesiology 124:664–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman K. Hamouda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Jayakar, S.S., Ang, G., Chiara, D.C., Hamouda, A.K. (2017). Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites. In: Kobeissy, F., Stevens, Jr., S. (eds) Neuroproteomics. Methods in Molecular Biology, vol 1598. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6952-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6952-4_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6950-0

  • Online ISBN: 978-1-4939-6952-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics