Skip to main content

Inkjet-Printed Paper Fluidic Devices for Onsite Detection of Antibiotics Using Surface-Enhanced Raman Spectroscopy

  • Protocol
  • First Online:
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1572))

Abstract

Surface enhanced Raman spectroscopy (SERS) provides rapid and sensitive identification of small molecule analytes. Traditionally, fabrication of SERS devices is an expensive process that involves the use of micro- and nano-fabrication procedures. Further, acquisition of diverse sample types requires complex preparation procedures that limits SERS to lab-based applications. Recent innovations using plasmonic nanoparticles embedded in flexible paper substrates has allowed the expansion of SERS techniques to portable analytical procedures. Recently inkjet-printing has been identified as a low cost, rapid, and highly customizable method for producing paper based SERS sensors with robust performance. This chapter details the materials and procedures by which inkjet printed SERS sensors can be fabricated and applied to relevant applications. In particular, methods for utilizing the sensors for detection of antibiotics are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Reference

  1. Nie S, Emory S (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303):1102–1106

    Article  CAS  Google Scholar 

  2. Michaels AM, Nirmal M, Brus LE (1999) Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J Am Chem Soc 121(43):9932–9939. doi:10.1021/ja992128q

    Article  CAS  Google Scholar 

  3. Kneipp K, Wang Y, Kneipp H, Perelman L, Itzkan I, Dasari R, Feld M (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670. doi:10.1103/PhysRevLett.78.1667

    Article  CAS  Google Scholar 

  4. Kneipp K, Kneipp H, Kartha V, Manoharan R, Deinum G, Itzkan I, Dasari R, Feld M (1998) Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E 57(6):R6281–R6284. doi:10.1103/PhysRevE.57.R6281 Available at http://link.aps.org/doi/10.1103/PhysRevE.57.R6281

    Google Scholar 

  5. Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, Hommer MB, Jackson MA, Smith PC, Walter DG, Natan MJ (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267:1629–1632

    Article  CAS  Google Scholar 

  6. Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 77(10):3261–3266. doi:10.1021/ac048176x

    Article  CAS  Google Scholar 

  7. Wang H, Levin CS, Halas NJ (2005) Nanosphere arrays with controlled sub-10-Nm gaps as surface-enhanced Raman spectroscopy substrates. J Am Chem Soc 127:14992–14993

    Article  CAS  Google Scholar 

  8. Liz-Marza LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41

    Article  Google Scholar 

  9. Kuncicky DM, Prevo BG, Velev OD (2006) Controlled assembly of SERS substrates templated by colloidal crystal films. J Mater Chem 16(13):1207–1211. doi:10.1039/b512734c

    Article  CAS  Google Scholar 

  10. Jung HY, Park Y-K, Park S, Kim SK (2007) Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles. Anal Chim Acta 602(2):236–243. doi:10.1016/j.aca.2007.09.026

    Article  CAS  Google Scholar 

  11. Liberman V, Yilmaz C, Bloomstein TM, Somu S, Echegoyen Y, Busnaina A, Cann SG, Krohn KE, Marchant MF, Rothschild M (2010) A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates. Adv Mater 22(38):4298–4302. doi:10.1002/adma.201001670

    Article  CAS  Google Scholar 

  12. Mahajan S, Richardson J, Brown T, Bartlett PN (2008) SERS-melting: a new method for discriminating mutations in DNA sequences. J Am Chem Soc 130(28):15589–15601

    Article  CAS  Google Scholar 

  13. Chaney SB, Shanmukh S, Dluhy RA, Zhao Y-P (2005) Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates. Appl Phys Lett 87(3):031908. doi:10.1063/1.1988980

    Article  Google Scholar 

  14. Jensen TR, Malinsky MD, Haynes CL, Van Duyne RP (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104(45):10549–10556. doi:10.1021/jp002435e

    Article  CAS  Google Scholar 

  15. Im H, Bantz KC, Lindquist NC, Haynes CL, Oh S-H (2010) Vertically oriented Sub-10-Nm plasmonic nanogap arrays. Nano Lett 10(6):2231–2236. doi:10.1021/nl1012085

    Article  CAS  Google Scholar 

  16. Deng X, Braun GB, Liu S, Sciortino PF, Koefer B, Tombler T, Moskovits M (2010) Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy. Nano Lett 10:1780–1786

    Article  CAS  Google Scholar 

  17. Tran CD (1984) Subnanogram detection of dyes on filter paper by surface-enhanced Raman scattering spectrometry. Anal Chem 56:824–826

    Article  CAS  Google Scholar 

  18. Tran CD (1984) Ln situ identification of paper chromatogram spots by surface enhanced Raman scattering. J Chromatogr 292:432–438

    Article  CAS  Google Scholar 

  19. Vo-Dinh T, Hiromoto MYK, Begun GM, Moody RL (1984) Surface-enhanced Raman spectrometry for trace organic-analysis. Anal Chem 56:1667–1670

    Article  CAS  Google Scholar 

  20. Vo-Dinh T, Uziel M, Morrison AL (1987) Surface-enhanced Raman analysis of benzo[A]pyrene-DNA adducts on silver-coated cellulose substrates. Appl Spectrosc 41:605–610

    Article  Google Scholar 

  21. Berthod A, Lasernas JJ, Winefordner JD (1988) Analysis by surface enhanced Raman spectroscopy on silver hydrosols and silver coated filter papers. J Pharm Biomed Anal 6:599–608

    Article  CAS  Google Scholar 

  22. Laserna JJ, Campiglia AD, Winefordner JD (1989) Mixture analysis and quantitative determination of nitrogen-containing organic molecules by surface-enhanced Raman spectrometry. Anal Chem 61(15):1697–1701

    Article  CAS  Google Scholar 

  23. Cabalin L, Laserna J (1995) Fast spatially resolved surface-enhanced Raman spectrometry on a silver coated filter paper using charge-coupled device detection. Anal Chim Acta 310:337–345

    Article  CAS  Google Scholar 

  24. Lee CH, Tian L, Singamaneni S (2010) Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl Mater Interfaces 2(12):3429–3435. doi:10.1021/am1009875 Available at http://dx.doi.org/10.1021/am1009875

    Article  CAS  Google Scholar 

  25. Lee CH, Hankus ME, Tian L, Pellegrino PM, Singamaneni S (2011) Highly sensitive surface enhanced Raman scattering substrates. Anal Chem 83:8953–8958

    Article  CAS  Google Scholar 

  26. Abbas A, Brimer A, Slocik JM, Tian L, Naik RR, Singamaneni S (2013) Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal Chem 85:3977–3983. doi:10.1021/ac303567g

    Article  CAS  Google Scholar 

  27. Ngo YH, Li D, Simon GP, Garnier G (2012) Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Langmuir 28(23):8782–8790. doi:10.1021/la3012734

    Article  CAS  Google Scholar 

  28. Ngo YH, Li D, Simon GP, Garnier G (2013) Effect of cationic polyacrylamides on the aggregation and SERS performance of gold nanoparticles-treated paper. J Colloid Interface Sci 392:237–246. doi:10.1016/j.jcis.2012.09.080

    Article  CAS  Google Scholar 

  29. Mehn D, Morasso C, Vanna R, Bedoni M, Prosperi D, Gramatica F (2013) Immobilised gold nanostars in a paper-based test system for surface-enhanced Raman spectroscopy. Vibr Spectrosc 68:45–50. doi:10.1016/j.vibspec.2013.05.010

    Article  CAS  Google Scholar 

  30. Qu L-L, Li D-W, Xue J-Q, Zhai W-L, Fossey JS, Long Y-T (2012) Batch fabrication of disposable screen printed SERS arrays. Lab Chip 12(5):876–881. doi:10.1039/c2lc20926h

    Article  CAS  Google Scholar 

  31. Yu WW, White IM (2010) Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal Chem 82(23):9626–9630. doi:10.1021/ac10247 5 k

    Article  CAS  Google Scholar 

  32. Hoppmann EP, Yu WW, White IM (2013) Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 63:219–224

    Article  CAS  Google Scholar 

  33. Yu WW, White IM (2013) Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates. Analyst 138(13):3679–3686. doi:10.1039/c3an00673e Available at http://pubs.rsc.org/en/Content/ArticleHTML/2013/AN/C3AN00673E

    Article  CAS  Google Scholar 

  34. Yu WW, White IM (2013) Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138(4):1020–1025. doi:10.1039/c2an36116g Available at http://pubs.rsc.org/en/content/articlehtml/2013/an/c2an36116g

    Article  CAS  Google Scholar 

  35. Hoppmann EP, Yu WW, White IM (2014) Inkjet-printed fluidic paper devices for chemical and biological analytics using surface enhanced Raman spectroscopy. IEEE J Select Topics Quantum Electron 20(3):7300510

    Google Scholar 

  36. Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86(17):3391–3395. doi:10.1021/j100214a025 Available at http://dx.doi.org/10.1021/j100214a025

    Article  CAS  Google Scholar 

  37. Allain LR, Stratis-Cullum DN, Vo-Dinh T (2004) Investigation of microfabrication of biological sample arrays using piezoelectric and bubble-jet printing technologies. Anal Chim Acta 518(1–2):77–85. doi:10.1016/j.aca.2004.04.065 Available at http://www.sciencedirect.com/science/article/pii/S0003267004005835

    Article  CAS  Google Scholar 

  38. Hoppmann EP, Yu WW, White IM (2014) Detection of deoxyribonucleic acid (DNA) targets using polymerase chain reaction (PCR) and paper surface-enhanced Raman spectroscopy (SERS) chromatography. Appl Spectrosc 68(8):909–915. doi:10.1366/14-07451

    Article  CAS  Google Scholar 

  39. Song C, Wang Z, Zhang R, Yang J, Tan X, Cui Y (2009) Highly sensitive immunoassay based on Raman reporter-labeled immuno-au aggregates and SERS-active immune substrate. Biosens Bioelectron 25(4):826–831. doi:10.1016/j.bios.2009.08.035 Available at http://www.sciencedirect.com/science/article/pii/S095656630900459X

    Article  CAS  Google Scholar 

  40. Yazdi SH, Giles KL, White IM (2013) Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device. Anal Chem 85(21):10605–10611. doi:10.1021/ac402744z Available at http://dx.doi.org/10.1021/ac402744z

    Article  CAS  Google Scholar 

  41. Faulds K, Smith WE, Graham D (2004) Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal Chem 76(2):412–417. doi:10.1021/ac035060c Available at http://dx.doi.org/10.1021/ac035060c

    Article  CAS  Google Scholar 

  42. Masand PS, Roca M, Turner MS, Kane JM (2009) Partial adherence to antipsychotic medication impacts the course of illness in patients with schizophrenia: a review. J Clin Psychiatry 11(4):147–154. doi:10.4088/PCC.08r00612 Available at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2736032&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  43. Rybak M, Lomaestro B, Rotschafer JC, Moellering R, Craig W, Billeter M, Dalovisio JR, Levine DP (2009) Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66(1):82–98. doi:10.2146/ajhp080434 Available at http://www.ajhp.org/content/66/1/82.short

    Article  CAS  Google Scholar 

  44. Patel BM, Paratz J, See NC, Muller MJ, Rudd M, Paterson D, Briscoe SE, Ungerer J, McWhinney BC, Lipman J, Roberts JA (2012) Therapeutic Drug monitoring of beta-lactam antibiotics in burns patients—a one-year prospective study. Ther Drug Monit 34(2):160–164. doi:10.1097/FTD.0b013e31824981a6 Available at http://www.ncbi.nlm.nih.gov/pubmed/22406650

    Article  CAS  Google Scholar 

  45. Schulz M, Schmoldt A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Available at http://www.ingentaconnect.com/content/govi/pharmaz/2003/00000058/00000007/art00001

  46. Bonifacio A, Dalla Marta S, Spizzo R, Cervo S, Steffan A, Colombatti A, Sergo V (2014) Surface-enhanced Raman spectroscopy of blood plasma and serum using Ag and Au nanoparticles: a systematic study. Anal Bioanal Chem 406(9-10):2355–2365. doi:10.1007/s00216–014–7622-1 Available at http://www.ncbi.nlm.nih.gov/pubmed/24493335

    Article  CAS  Google Scholar 

  47. Premasiri WR, Lee JC, Ziegler LD (2012) Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: cellular processes and bioanalytical sensing. J Phys Chem B 116(31):9376–9386. doi:10.1021/jp304932g Available at http://pubs.acs.org.proxy-um.researchport.umd.edu/doi/full/10.1021/jp304932g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Restaino, S.M., Berger, A., White, I.M. (2017). Inkjet-Printed Paper Fluidic Devices for Onsite Detection of Antibiotics Using Surface-Enhanced Raman Spectroscopy. In: Prickril, B., Rasooly, A. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1572. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6911-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6911-1_33

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6910-4

  • Online ISBN: 978-1-4939-6911-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics