Skip to main content

IL-9 Production by Nonconventional T helper Cells

  • Protocol
  • First Online:
Book cover Th9 Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1585))

Abstract

IL-9 is a pro-inflammatory cytokine implicated in certain immune-mediated diseases where chronic or acute inflammation of the mucosa plays an important role. Although initially described as being produced by what was then thought to be Th2 cells, it was later described that specialized lymphocyte populations are involved in IL-9 production. In addition to the classical Th9 effector (subset of CD4+ T cells), IL-9 is also produced by nonconventional lymphocytes, namely invariant natural killer T (iNKT) cells and innate lymphoid cells (ILCs). The identification of IL-9-producing cells by flow cytometry and cytokine measurements are pivotal for assigning and defining functional cellular phenotypes. In this chapter we provide methods for the in vitro polarization of IL-9-producing nonconventional lymphocytes and the best conditions for the detection of IL-9 production by intracellular staining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uyttenhove C, Simpson RJ, Van Snick J (1988) Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proc Natl Acad Sci U S A 85:6934–6938. doi:10.1073/pnas.85.18.6934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simpson RJMR, Rubira MR, Gorman JJ, Van Snick J (1989) Complete amino acid sequence of a new murine T-cell growth factor P40. Eur J Biochem 183:715–722

    Article  CAS  PubMed  Google Scholar 

  3. Schmitt E, Van Brandwijk R, Van Snick J, Siebold B, Rüde E (1989) TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur J Immunol 19:2167–2170. doi:10.1002/eji.1830191130

    Article  CAS  PubMed  Google Scholar 

  4. Yang YCRS, Ciarletta A, Calvetti J, Kelleher K, Clark SC (1989) Expression cloning of cDNA encoding a novel human hematopoietic growth factor: human homologue of murine T-cell growth factor P40. Blood 74:1880–1884

    CAS  PubMed  Google Scholar 

  5. Elyaman WBE, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, Bettelli E, Oukka M, van Snick J, Renauld JC, Kuchroo VK, Khoury SJ (2009) IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci U S A 106:12885–12890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hültner LKS, Stassen M, Kaspers U, Kremer JP, Mailhammer R, Moeller J, Broszeit H, Schmitt E (2000) In activated mast cells, IL-1 up-regulates the production of several Th2-related cytokines including IL-9. J Immunol 164:5556–5563

    Article  PubMed  Google Scholar 

  7. Mohamadzadeh MAK, Sugamura K, Bergstresser PR, Takashima A (1996) Expression of the common cytokine receptor gamma chain by murine dendritic cells including epidermal Langerhans cells. Eur J Immunol 26:156–160

    Article  CAS  PubMed  Google Scholar 

  8. Veldhoen MUC, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346. doi:10.1038/ni.1659

    Article  CAS  PubMed  Google Scholar 

  9. Schmitt EGT, Goedert S, Hoehn P, Huels C, Koelsch S, Kühn R, Müller W, Palm N, Rüde E (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153:3989–3996

    CAS  PubMed  Google Scholar 

  10. Dardalhon VAA, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9:1347–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kaplan MHHM, Olson MR (2015) The development and in vivo function of T helper 9 cells. Nat Rev Immunol 15:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaplan MH (2013) Th9 cells: differentiation and disease. Immunol Rev 252:104–115

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jash ASA, Kim GC, Chae CS, Hwang JS, Kim JE, Im SH (2012) Nuclear factor of activated T cells 1 (NFAT1)-induced permissive chromatin modification facilitates nuclear factor-κB (NF-κB)-mediated interleukin-9 (IL-9) transactivation. J Biol Chem 278:15445–15457

    Article  Google Scholar 

  14. Xiao XBS, Liu W, Chu X, Wang H, Taparowsky EJ, Fu YX, Choi Y, Walsh MC, Li XC (2012) OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol 13:981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu YXKL, Luo W, Li CC, Yang L, Yang YC (1996) Multiple transcription factors are required for activation of human interleukin 9 gene in T cells. J Biol Chem 271:15815–15822

    Article  CAS  PubMed  Google Scholar 

  16. Bassil ROW, Olah M, Kurdi AT, Frangieh M, Buttrick T, Khoury SJ, Elyaman W (2014) BCL6 controls Th9 cell development by repressing Il9 transcription. J Immunol 193:198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liao WSR, Li P, Du N, West EE, Ren M, Mitra S, Leonard WJ (2014) Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. Proc Natl Acad Sci U S A 111:3508–3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goswami R, Jabeen R, Yagi R, Pham D, Zhu J, Goenka S, Kaplan MH (2012) STAT6-dependent regulation of Th9 development. J Immunol 188:968–975. doi:10.4049/jimmunol.1102840

    Article  CAS  PubMed  Google Scholar 

  19. Chang H-C, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi A-N, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11:527–534. doi:10.1038/ni.1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jabeen R, Goswami R, Awe O, Kulkarni A, Nguyen ET, Attenasio A, Walsh D, Olson MR, Kim MH, Tepper RS, Sun J, Kim CH, Taparowsky EJ, Zhou B, Kaplan MH (2013) Th9 cell development requires a BATF-regulated transcriptional network. J Clin Invest 123:4641–4653. doi:10.1172/JCI69489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33:192–202. doi:10.1016/j.immuni.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  22. Barlow JL, McKenzie ANJ (2014) Type-2 innate lymphoid cells in human allergic disease. Curr Opin Allergy Clin Immunol 14:397–403. doi:10.1097/ACI.0000000000000090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mjösberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H (2011) Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 12:1055–1062. doi:10.1038/ni.2104

    Article  PubMed  Google Scholar 

  24. Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, McKenzie ANJ (2012) Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol 129:191–198.e191–194. doi:10.1016/j.jaci.2011.09.041

    Article  CAS  PubMed  Google Scholar 

  25. Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H (2012) IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol 188:1503–1513. doi:10.4049/jimmunol.1102832

    Article  CAS  PubMed  Google Scholar 

  26. Gold MJ, Antignano F, Halim TYF, Hirota JA, Blanchet M-R, Zaph C, Takei F, McNagny KM (2014) Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J Allergy Clin Immunol 133:1142–1148. doi:10.1016/j.jaci.2014.02.033

    Article  CAS  PubMed  Google Scholar 

  27. Halim TYF, Krauss RH, Sun AC, Takei F (2012) Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36:451–463. doi:10.1016/j.immuni.2011.12.020

    Article  CAS  PubMed  Google Scholar 

  28. Kim HY, Chang Y-J, Subramanian S, Lee H-H, Albacker LA, Matangkasombut P, Savage PB, McKenzie ANJ, Smith DE, Rottman JB, DeKruyff RH, Umetsu DT (2012) Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 129:216–227.e211–216. doi:10.1016/j.jaci.2011.10.036

    Google Scholar 

  29. Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301. doi:10.1038/nature14189

    Article  CAS  PubMed  Google Scholar 

  30. Hoyler T, Klose CSN, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37:634–648. doi:10.1016/j.immuni.2012.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liang H-E, Reinhardt RL, Bando JK, Sullivan BM, Ho I-C, Locksley RM (2012) Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat Immunol 13:58–66. doi:10.1038/ni.2182

    Article  CAS  Google Scholar 

  32. Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U, Radtke F, Hardman CS, Hwang YY, Fallon PG, McKenzie ANJ (2012) Transcription factor RORα is critical for nuocyte development. Nat Immunol 13:229–236. doi:10.1038/ni.2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang Q, Monticelli LA, Saenz SA, Chi AW-S, Sonnenberg GF, Tang J, De Obaldia ME, Bailis W, Bryson JL, Toscano K, Huang J, Haczku A, Pear WS, Artis D, Bhandoola A (2013) T Cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38:694–704. doi:10.1016/j.immuni.2012.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bendelac A (1995) Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J Exp Med 182:2091–2096

    Article  CAS  PubMed  Google Scholar 

  35. Constantinides MG, Bendelac A (2013) Transcriptional regulation of the NKT cell lineage. Curr Opin Immunol 25:161–167. doi:10.1016/j.coi.2013.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Monteiro M, Almeida CF, Caridade M, Ribot JC, Duarte J, Agua-Doce A, Wollenberg I, Silva-Santos B, Graca L (2010) Identification of regulatory Foxp3+ invariant NKT cells induced by TGF-beta. J Immunol 185:2157–2163. doi:10.4049/jimmunol.1000359

    Article  CAS  PubMed  Google Scholar 

  37. Monteiro M, Almeida CF, Agua-Doce A, Graca L (2013) Induced IL-17-producing invariant NKT cells require activation in presence of TGF-β and IL-1β. J Immunol 190:805–811. doi:10.4049/jimmunol.1201010

    Article  CAS  PubMed  Google Scholar 

  38. Kim HS, Chung DH (2013) IL-9-producing invariant NKT cells protect against DSS-induced colitis in an IL-4-dependent manner. Mucosal Immunol 6:347–357. doi:10.1038/mi.2012.77

    Article  CAS  PubMed  Google Scholar 

  39. Monteiro M, Agua-Doce A, Almeida CF, Fonseca-Pereira D, Veiga-Fernandes H, Graca L (2015) IL-9 expression by invariant NKT cells is not imprinted during thymic development. J Immunol 195:3463–3471. doi:10.4049/jimmunol.1403170

    Article  CAS  PubMed  Google Scholar 

  40. McNab FW, Pellicci DG, Field K, Besra G, Smyth MJ, Godfrey DI, Berzins SP (2007) Peripheral NK1.1 NKT cells are mature and functionally distinct from their thymic counterparts. J Immunol 179:6630–6637

    Article  CAS  PubMed  Google Scholar 

  41. Doull IJ, Lawrence S, Watson M, Begishvili T, Beasley RW, Lampe F, Holgate T, Morton NE (1996) Allelic association of gene markers on chromosomes 5q and 11q with atopy and bronchial hyperresponsiveness. Am J Respir Crit Care Med 153:1280–1284. doi:10.1164/ajrccm.153.4.8616554

    Article  CAS  PubMed  Google Scholar 

  42. Sordillo JE, Kelly R, Bunyavanich S, McGeachie M, Qiu W, Croteau-Chonka DC, Soto-Quiros M, Avila L, Celedón JC, Brehm JM, Weiss ST, Gold DR, Litonjua AA (2015) Genome-wide expression profiles identify potential targets for gene-environment interactions in asthma severity. J Allergy Clin Immunol 136:885–892.e882. doi:10.1016/j.jaci.2015.02.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nouri-Aria KT, Pilette C, Jacobson MR, Watanabe H, Durham SR (2005) IL-9 and c-Kit+ mast cells in allergic rhinitis during seasonal allergen exposure: effect of immunotherapy. J Allergy Clin Immunol 116:73–79. doi:10.1016/j.jaci.2005.03.011

    Article  CAS  PubMed  Google Scholar 

  44. Brough HA, Cousins DJ, Munteanu A, Wong YF, Sudra A, Makinson K, Stephens AC, Arno M, Ciortuz L, Lack G, Turcanu V (2014) IL-9 is a key component of memory TH cell peanut-specific responses from children with peanut allergy. J Allergy Clin Immunol 134:1329–1338.e1310. doi:10.1016/j.jaci.2014.06.032

    Article  CAS  PubMed  Google Scholar 

  45. Chen C-Y, Lee J-B, Liu B, Ohta S, Wang P-Y, Kartashov AV, Mugge L, Abonia JP, Barski A, Izuhara K, Rothenberg ME, Finkelman FD, Hogan SP, Wang Y-H (2015) Induction of Interleukin-9-Producing Mucosal Mast Cells Promotes Susceptibility to IgE-Mediated Experimental Food Allergy. Immunity 43:788–802. doi:10.1016/j.immuni.2015.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu J, Harberts E, Tammaro A, Girardi N, Filler RB, Fishelevich R, Temann A, Licona-Limón P, Girardi M, Flavell RA, Gaspari AA (2014) IL-9 regulates allergen-specific Th1 responses in allergic contact dermatitis. J Invest Dermatol 134:1903–1911. doi:10.1038/jid.2014.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, Lehr H-A, Wirtz S, Vieth M, Waisman A, Rosenbauer F, McKenzie ANJ, Weigmann B, Neurath MF (2014) TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 15:676–686. doi:10.1038/ni.2920

    Article  CAS  PubMed  Google Scholar 

  48. Defendenti C, Sarzi-Puttini P, Saibeni S, Bollani S, Bruno S, Almasio PL, Declich P, Atzeni F (2015) Significance of serum Il-9 levels in inflammatory bowel disease. Int J Immunopathol Pharmacol 28:569–575. doi:10.1177/0394632015600535

    Article  PubMed  Google Scholar 

  49. Knoops L, Renauld J-C (2004) IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors (Chur) 22:207–215. doi:10.1080/08977190410001720879

    Article  CAS  Google Scholar 

  50. Purwar R, Schlapbach C, Xiao S, Kang HS, Elyaman W, Jiang X, Jetten AM, Khoury SJ, Fuhlbrigge RC, Kuchroo VK, Clark RA, Kupper TS (2012) Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 18:1248–1253. doi:10.1038/nm.2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan H-F, Leng R-X, Li X-P, Zheng SG, Ye D-Q (2013) Targeting T-helper 9 cells and interleukin-9 in autoimmune diseases. Cytokine Growth Factor Rev 24:515–522

    Article  CAS  PubMed  Google Scholar 

  52. Rojas-Zuleta WG, Vásquez G (2016) Th9 lymphocytes: A recent history from IL-9 to its potential role in rheumatic diseases. Autoimmun Rev. doi:10.1016/j.autrev.2016.02.020

    PubMed  Google Scholar 

  53. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4:648–655. doi:10.1038/nri1416

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marta Monteiro for her contribution to the iNKT cell work in the lab, including establishing the protocols described in this paper. Work in the host laboratory is supported by Fundação para a Ciencia e Tecnologia (PTDC/SAU-TOX/11424/2009) and FAPESP (FAPESP/19906/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Graca M.D., D.Phil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Almeida, S.C.P., Graca, L. (2017). IL-9 Production by Nonconventional T helper Cells. In: Goswami, R. (eds) Th9 Cells. Methods in Molecular Biology, vol 1585. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6877-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6877-0_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6876-3

  • Online ISBN: 978-1-4939-6877-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics