Skip to main content

Low-Cost Charged-Coupled Device (CCD) Based Detectors for Shiga Toxins Activity Analysis

  • Protocol
  • First Online:
Biosensors and Biodetection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1571))

  • 3055 Accesses

Abstract

To improve food safety there is a need to develop simple, low-cost sensitive devices for detection of food-borne pathogens and their toxins. We describe a simple, low-cost webcam-based detector which can be used for various optical detection modalities, including fluorescence, chemiluminescence, densitometry, and colorimetric assays. The portable battery-operated CCD-based detection system consists of four modules: (1) a webcam to measure and record light emission, (2) a sample plate to perform assays, (3) a light emitting diode (LED) for illumination, and (4) a portable computer to acquire and analyze images. To demonstrate the technology, we used a cell based assay for fluorescence detection of the activity of the food borne Shiga toxin type 2 (Stx2), differentiating between biologically active toxin and inactive toxin which is not a risk. The assay is based on Shiga toxin inhibition of cell protein synthesis measured through inhibition of the green fluorescent protein (GFP). In this assay, GFP emits light at 509 nm when excited with a blue LED equipped with a filter at 486 nm. The emitted light is then detected with a green filter at 535 nm. Toxin activity is measured through a reduction in the 509 nm emission. In this system the level of detection (LOD) for Stx2 was 0.1 pg/ml, similar to the LOD of commercial fluorometers. These results demonstrate the utility and potential of low cost detectors for toxin activity. This approach could be readily adapted to the detection of other food-borne toxins

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377:469–477

    Article  CAS  Google Scholar 

  2. Roda A, Manetta AC, Portanti O et al (2003) A rapid and sensitive 384-well microtitre format chemiluminescent enzyme immunoassay for 19-nortestosterone. Luminescence 18:72–78

    Article  CAS  Google Scholar 

  3. Svitel J, Surugiu I, Dzgoev A, Ramanathan K, Danielsson B (2001) Functionalized surfaces for optical biosensors: applications to in vitro pesticide residual analysis. J Mater Sci Mater Med 12:1075–1078

    Article  CAS  Google Scholar 

  4. Liu Y, Danielsson B (2007) Rapid high throughput assay for fluorimetric detection of doxorubicin—application of nucleic acid-dye bioprobe. Anal Chim Acta 587:47–51

    Article  CAS  Google Scholar 

  5. Burkert K, Neumann T, Wang J, Jonas U, Knoll W, Ottleben H (2007) Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter. Langmuir 23:3478–3484

    Article  CAS  Google Scholar 

  6. Tohda K, Gratzl M (2006) Micro-miniature autonomous optical sensor array for monitoring ions and metabolites 2: color responses to pH, K+ and glucose. Anal Sci 22:937–941

    Article  CAS  Google Scholar 

  7. Feldstein MJ, Golden JP, Rowe CA, Maccraith BD, Ligler FS (1999) Array biosensor: optical and fluidics systems. Biomed Microdevices 1:139–153

    Article  CAS  Google Scholar 

  8. Sohn YS, Goodey A, Anslyn EV, McDevitt JT, Shear JB, Neikirk DP (2005) A microbead array chemical sensor using capillary-based sample introduction: toward the development of an “electronic tongue”. Biosens Bioelectron 21:303–312

    Article  CAS  Google Scholar 

  9. Knecht BG, Strasser A, Dietrich R, Martlbauer E, Niessner R, Weller MG (2004) Automated microarray system for the simultaneous detection of antibiotics in milk. Anal Chem 76:646–654

    Article  CAS  Google Scholar 

  10. Balsam J, Bruck HA, Rasooly A (2015) Smartphone-based fluorescence detector for mHealth. Methods Mol Biol 1256:231–245

    Article  Google Scholar 

  11. Balsam J, Rasooly R, Bruck HA, Rasooly A (2014) Thousand-fold fluorescent signal amplification for mHealth diagnostics. Biosens Bioelectron 51:1–7

    Article  CAS  Google Scholar 

  12. Balsam J, Bruck HA, Rasooly A (2014) Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput. Analyst 139:4322–4329

    Article  CAS  Google Scholar 

  13. Balsam J, Bruck HA, Rasooly A (2013) Orthographic projection capillary array fluorescent sensor for mHealth. Methods 63:276–281

    Article  CAS  Google Scholar 

  14. Balsam J, Ossandon M, Bruck HA, Lubensky I, Rasooly A (2013) Low-cost technologies for medical diagnostics in low-resource settings. Expert Opin Med Diagn 7:243–255

    Article  Google Scholar 

  15. Sapsford KE, Taitt CR, Loo N, Ligler FS (2005) Biosensor detection of botulinum toxoid A and staphylococcal enterotoxin B in food. Appl Environ Microbiol 71:5590–5592

    Article  CAS  Google Scholar 

  16. Golden JP, Floyd-Smith TM, Mott DR, Ligler FS (2007) Target delivery in a microfluidic immunosensor. Biosens Bioelectron 22:2763–2767

    Article  CAS  Google Scholar 

  17. Kostov Y, Sergeev N, Wilson S, Herold KE, Rasooly A (2009) A simple portable electroluminescence illumination-based CCD detector. Methods Mol Biol 503:259–272

    Article  CAS  Google Scholar 

  18. Sapsford KE, Sun S, Francis J, Sharma S, Kostov Y, Rasooly A (2008) A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin A activity. Biosens Bioelectron 24:618–625

    Article  CAS  Google Scholar 

  19. Higgins JA, Nasarabadi S, Karns JS et al (2003) A handheld real time thermal cycler for bacterial pathogen detection. Biosens Bioelectron 18:1115–1123

    Article  CAS  Google Scholar 

  20. Sun S, Francis J, Sapsford KE, Kostov Y, Rasooly A (2010) Multi-wavelength Spatial LED illumination based detector for in vitro detection of botulinum neurotoxin A activity. Sens Actuators B 146:297–306

    Article  CAS  Google Scholar 

  21. Sun S, Ossandon M, Kostov Y, Rasooly A (2009) Lab-on-a-chip for botulinum neurotoxin a (BoNT-A) activity analysis. Lab Chip 9:3275–3281

    Article  CAS  Google Scholar 

  22. Rasooly R, Balsam J, Hernlem BJ, Rasooly A (2015) Sensitive detection of active Shiga toxin using low cost CCD based optical detector. Biosens Bioelectron 68:705–711

    Article  CAS  Google Scholar 

  23. Rasooly R, Do PM (2010) Shiga toxin Stx2 is heat-stable and not inactivated by pasteurization. Int J Food Microbiol 136:290–294

    Article  CAS  Google Scholar 

  24. Balsam J, Bruck HA, Kostov Y, Rasooly A (2012) Image stacking approach to increase sensitivity of fluorescence detection using a low cost complementary metal-oxide-semiconductor (CMOS) webcam. Sens Actuators B 171–172:141–147

    Article  Google Scholar 

  25. Balsam J, Ossandon M, Bruck HA, Rasooly A (2012) Modeling and design of micromachined optical Soller collimators for lensless CCD-based fluorometry. Analyst 137:5011–5017

    Article  CAS  Google Scholar 

  26. Sapsford KE, Francis J, Sun S, Kostov Y, Rasooly A (2009) Miniaturized 96-well ELISA chips for staphylococcal enterotoxin B detection using portable colorimetric detector. Anal Bioanal Chem 394:499–505

    Article  CAS  Google Scholar 

  27. Sun S, Yang M, Kostov Y, Rasooly A (2010) ELISA-LOC: lab-on-a-chip for enzyme-linked immunodetection. Lab Chip 10:2093–2100

    Article  CAS  Google Scholar 

  28. Yang M, Kostov Y, Bruck HA, Rasooly A (2009) Gold nanoparticle-based enhanced chemiluminescence immunosensor for detection of Staphylococcal enterotoxin B (SEB) in food. Int J Food Microbiol 133:265–271

    Article  CAS  Google Scholar 

  29. Yang M, Kostov Y, Bruck HA, Rasooly A (2008) Carbon nanotubes with enhanced chemiluminescence immunoassay for CCD-based detection of Staphylococcal enterotoxin B in food. Anal Chem 80:8532–8537

    Article  CAS  Google Scholar 

  30. Yang M, Kostov Y, Rasooly A (2008) Carbon nanotubes based optical immunodetection of Staphylococcal enterotoxin B (SEB) in food. Int J Food Microbiol 127:78–83

    Article  CAS  Google Scholar 

  31. Irawan R, Tjin SC, Yager P, Zhang D (2005) Cross-talk problem on a fluorescence multi-channel microfluidic chip system. Biomed Microdevices 7:205–211

    Article  Google Scholar 

  32. Hawkins KR, Yager P (2003) Nonlinear decrease of background fluorescence in polymer thin-films – a survey of materials and how they can complicate fluorescence detection in microTAS. Lab Chip 3:248–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuven Rasooly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rasooly, R., Prickril, B., Bruck, H.A., Rasooly, A. (2017). Low-Cost Charged-Coupled Device (CCD) Based Detectors for Shiga Toxins Activity Analysis. In: Rasooly, A., Prickril, B. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1571. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6848-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6848-0_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6846-6

  • Online ISBN: 978-1-4939-6848-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics