Skip to main content

Applying Fluorescence Correlation Spectroscopy to Investigate Peptide-Induced Membrane Disruption

  • Protocol
  • First Online:
Antimicrobial Peptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1548))

Abstract

There is considerable interest in understanding the interactions of antimicrobial peptides with phospholipid membranes. Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique that can be used to gain insight into these interactions. Specifically, FCS can be used to quantify leakage of fluorescent molecules of different sizes from large unilamellar lipid vesicles, thereby providing a tool for estimating the size of peptide-induced membrane disruptions. If fluorescently labeled lipids are incorporated into the membranes of the vesicles, FCS can also be used to obtain information about whether leakage occurs due to localized membrane perturbations or global membrane destabilization. Here, we outline a detailed step-by-step protocol on how to optimally implement an FCS-based leakage assay. To make the protocol easily accessible to other researchers, it has been supplemented with a number of practical tips and tricks.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6737-7_32

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-6737-7_32

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239:27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Almeida PF (2014) Membrane-active peptides: binding, translocation, and flux in lipid vesicles. Biochim Biophys Acta 1838:2216–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen TM, Cleland LG (1980) Serum-induced leakage of liposome contents. Biochim Biophys Acta 597:418–426

    Article  CAS  PubMed  Google Scholar 

  4. Weinstein JN, Yoshikami S, Henkart P et al (1977) Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 195:489–492

    Article  CAS  PubMed  Google Scholar 

  5. Matsuzaki K, Murase O, Miyajima K (1995) Kinetics of pore formation by an antimicrobial peptide, magainin 2, in phospholipid bilayers. Biochemistry 34:12553–12559

    Article  CAS  PubMed  Google Scholar 

  6. Ladokhin AS, Wimley WC, White SH (1995) Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. Biophys J 69:1964–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wimley WC (2015) Determining the effects of membrane-interacting peptides on membrane integrity. Methods Mol Biol 1324:89–106

    Article  PubMed  Google Scholar 

  8. Patel H, Tscheka C, Heerklotz H (2009) Characterizing vesicle leakage by fluorescence lifetime measurements. Soft Matter 5:2849–2851

    Article  CAS  Google Scholar 

  9. Pramanik A, Thyberg P, Rigler R (2000) Molecular interactions of peptides with phospholipid vesicle membranes as studied by fluorescence correlation spectroscopy. Chem Phys Lipids 104:35–47

    Article  CAS  PubMed  Google Scholar 

  10. Magzoub M, Oglęcka K, Pramanik A et al (2005) Membrane perturbation effects of peptides derived from the N-termini of unprocessed prion proteins. Biochim Biophys Acta 1716:126–136

    Article  CAS  PubMed  Google Scholar 

  11. Yu L, Guo L, Ding JL et al (2009) Interaction of an artificial antimicrobial peptide with lipid membranes. Biochim Biophys Acta 1788:333–344

    Article  CAS  PubMed  Google Scholar 

  12. Blicher A, Wodzinska K, Fidorra M et al (2009) The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics. Biophys J 96:4581–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Macháň R, Jurkiewicz P, Olżyńska A et al (2014) Peripheral and integral membrane binding of peptides characterized by time-dependent fluorescence shifts: focus on antimicrobial peptide LAH4. Langmuir 30:6171–6179

    Article  PubMed  Google Scholar 

  14. Kristensen K, Henriksen JR, Andresen TL (2014) Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy. Biochim Biophys Acta 1838:2994–3002

    Article  CAS  PubMed  Google Scholar 

  15. Kristensen K, Ehrlich N, Henriksen JR, Andresen TL (2015) Single-vesicle detection and analysis of peptide-induced membrane permeabilization. Langmuir 31:2472–2483

    Article  CAS  PubMed  Google Scholar 

  16. Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–297

    Article  CAS  Google Scholar 

  17. Ries J, Schwille P (2012) Fluorescence correlation spectroscopy. Bioessays 34:361–368

    Article  PubMed  Google Scholar 

  18. Henriksen JR, Andresen TL (2011) Thermodynamic profiling of peptide membrane interactions by isothermal titration calorimetry: a search for pores and micelles. Biophys J 101:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rouser G, Siakotos AN, Fleischer S (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86

    Article  CAS  PubMed  Google Scholar 

  20. Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4:963–973

    Article  CAS  PubMed  Google Scholar 

  21. Enderlein J, Gregor I, Patra D et al (2005) Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. ChemPhysChem 6:2324–2326

    Article  CAS  PubMed  Google Scholar 

  22. Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83:2300–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    CAS  PubMed  Google Scholar 

  24. Stewart JC (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14

    Article  CAS  PubMed  Google Scholar 

  25. Kristensen K, Henriksen JR, Andresen TL (2015) Adsorption of cationic peptides to solid surfaces of glass and plastic. PLoS One 10:e0122419

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182:319–326

    Article  CAS  PubMed  Google Scholar 

  27. Wohland T, Rigler R, Vogel H (2001) The standard deviation in fluorescence correlation spectroscopy. Biophys J 80:2987–2999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Melo AM, Prieto M, Coutinho A (2014) Quantifying lipid-protein interaction by fluorescence correlation spectroscopy (FCS). Methods Mol Biol 1076:575–595

    Article  CAS  PubMed  Google Scholar 

  29. Sahoo B, Drombosky KW, Wetzel R (2016) Fluorescence correlation spectroscopy: a tool to study protein oligomerization and aggregation in vitro and in vivo. Methods Mol Biol 1345:67–87

    Article  PubMed  Google Scholar 

  30. Rüttinger S, Buschmann V, Krämer B et al (2008) Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. J Microsc 232:343–352

    Article  PubMed  Google Scholar 

  31. Bohrer MP, Deen WM, Robertson CR et al (1979) Influence of molecular configuration on the passage of macromolecules across glomerular capillary wall. J Gen Physiol 74:583–593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jannik B. Larsen and Anncatrine L. Petersen for critical reading of the manuscript and valuable comments. Financial support for this work was kindly provided by the NanoMorph consortium—funded by the Danish Council for Technology and Innovation—and the Lundbeck Foundation Research Initiative on Brain Barriers and Drug Delivery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Andresen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kristensen, K., Henriksen, J.R., Andresen, T.L. (2017). Applying Fluorescence Correlation Spectroscopy to Investigate Peptide-Induced Membrane Disruption. In: Hansen, P. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 1548. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6737-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6737-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6735-3

  • Online ISBN: 978-1-4939-6737-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics