Skip to main content

Quantitative Fluorescence In Situ Hybridization (QFISH)

  • Protocol
  • First Online:
Cancer Cytogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1541))

Abstract

Fluorescence in situ hybridization (FISH) has a wide spectrum of applications in current molecular cytogenetic and cancer research. This is a unique technique that can be used for chromosomal DNA analysis in all cell types, at all stages of the cell cycle, and at molecular resolution. Recent developments in microscopy and imaging systems have allowed quantification of digital FISH images (quantitative FISH or QFISH) and have provided a new way for molecular cytogenetic analysis at single-cell level. QFISH can be applied for studying chromosome imbalances in interphase nuclei or metaphase spreads, measuring relative DNA content at chromosomal loci and identifying parental origin of homologous chromosomes. Here, a QFISH protocol suitable for the majority of DNA probes using the popular US National Institute of Health developed ImageJ software is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poon SS, Lansdorp PM (2001) Quantitative fluorescence in situ hybridization (Q-FISH). Curr Protoc Cell Biol 18:18.4. doi:10.1002/0471143030.cb1804s12

    Google Scholar 

  2. Truong K, Gibaud A, Dupont JM et al (2003) Rapid prenatal diagnosis of Down syndrome using quantitative fluorescence in situ hybridization on interphase nuclei. Prenat Diagn 23(2):146–151. doi:10.1002/pd.558

    Article  PubMed  Google Scholar 

  3. Iourov IY, Soloviev IV, Vorsanova SG et al (2005) An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. J Histochem Cytochem 53(3):401–408. doi:10.1369/jhc.4A6419.2005

    Article  CAS  PubMed  Google Scholar 

  4. Vorsanova SG, Yurov YB, Iourov IY (2010) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 3:1. doi:10.1186/1755-8166-3-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yurov YB, Iourov IY, Vorsanova SG et al (2007) Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One 2(6):e558. doi:10.1371/journal.pone.0000558

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yurov YB, Iourov IY, Vorsanova SG et al (2008) The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res 98(1-3):139–147. doi:10.1016/j.schres.2007.07.035, http://dx.doi.org/

    Article  PubMed  Google Scholar 

  7. Iourov IY, Vorsanova SG, Liehr T et al (2009) Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet 18(14):2656–2669. doi:10.1093/hmg/ddp207

    Article  CAS  PubMed  Google Scholar 

  8. Iourov IY, Vorsanova SG, Liehr T et al (2009) Aneuploidy in the normal, Alzheimer’s disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis 34(2):212–220. doi:10.1016/j.nbd.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  9. Yurov YB, Vorsanova SG, Liehr T et al (2014) X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet 7(1):20. doi:10.1186/1755-8166-7-20

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wan TS, Martens UM, Poon SS et al (1999) Absence or low number of telomere repeats at junctions of dicentric chromosomes. Genes Chromosomes Cancer 24(1):83–86. doi:10.1002/(SICI)1098-2264(199901)24:1<83::AID-GCC12>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  11. Kawano Y, Ishikawa N, Aida J et al (2014) Q-FISH measurement of hepatocyte telomere lengths in donor liver and graft after pediatric living-donor liver transplantation: donor age affects telomere length sustainability. PLoS One 9(4), e93749. doi:10.1371/journal.pone.0093749

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vorsanova SG, Iourov IY, Beresheva AK et al (2005) Non-disjunction of chromosome 21, alphoid DNA variation, and sociogenetic features of Down syndrome. Tsitol Genet 39(6):30–36

    CAS  PubMed  Google Scholar 

  13. Weise A, Gross M, Mrasek K et al (2008) Parental-origin-determination fluorescence in situ hybridization distinguishes homologous human chromosomes on a single-cell level. Int J Mol Med 21(2):189–200. doi:10.3892/ijmm.21.2.189

    CAS  PubMed  Google Scholar 

  14. Rodenacker K, Aubele M, Hutzler P et al (1997) Groping for quantitative digital 3-D image analysis: an approach to quantitative fluorescence in situ hybridization in thick tissue sections of prostate carcinoma. Anal Cell Pathol 15(1):19–29. doi:10.1155/1997/790963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Truong K, Guilly MN, Gerbault-Seureau M et al (1998) Quantitative FISH by image cytometry for the detection of chromosome 1 imbalances in breast cancer: a novel approach analyzing chromosome rearrangements within interphase nuclei. Lab Invest 78(12):1607–1613

    CAS  PubMed  Google Scholar 

  16. Stevens R, Almanaseer I, Gonzalez M et al (2007) Analysis of HER2 gene amplification using an automated fluorescence in situ hybridization signal enumeration system. J Mol Diagn 9(2):144–150. doi:10.2353/jmoldx.2007.060102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou Z, Pons MN, Raskin L et al (2007) Automated image analysis for quantitative fluorescence in situ hybridization with environmental samples. Appl Environ Microbiol 73(9):2956–2962. doi:10.1128/AEM.02954-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Amakawa G, Ikemoto K, Ito H et al (2013) Quantitative analysis of centromeric FISH spots during the cell cycle by image cytometry. J Histochem Cytochem 61(10):699–705. doi:10.1369/0022155413498754

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harutyunyan T, Hovhannisyan G, Babayan N et al (2015) Influence of aflatoxin B1 on copy number variants in human leukocytes in vitro. Mol Cytogenet 8:25. doi:10.1186/s13039-015-0131-x

    Article  PubMed  PubMed Central  Google Scholar 

  20. Iourov IY, Liehr T, Vorsanova SG et al (2006) Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB). Chromosome Res 14(3):223–229. doi:10.1007/s10577-006-1037-6

    Article  CAS  PubMed  Google Scholar 

  21. Iourov IY, Liehr T, Vorsanova SG et al (2007) Interphase chromosome-specific multicolor banding (ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity. Biomol Eng 24(4):415–417

    Article  CAS  PubMed  Google Scholar 

  22. Iourov IY, Vorsanova SG, Yurov YB (2008) Fluorescence intensity profiles of in situ hybridization signals depict genome architecture within human interphase nuclei. Tsitol Genet 42(5):3–8

    CAS  PubMed  Google Scholar 

  23. Iourov IY, Vorsanova SG, Pellestor F et al (2006) Brain tissue preparations for chromosomal PRINS labeling. Methods Mol Biol 334:123–132. doi:10.1385/1-59745-068-5:123

    PubMed  Google Scholar 

  24. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675. doi:10.1038/nmeth.2089

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The article is dedicated to Ilia V. Soloviev. I would like to express my gratitude to Prof. Svetlana G Vorsanova and Prof. Yuri B Yurov for helping in the preparation of this chapter. This work was supported by the Russian Science Foundation (Grant #14-35-00060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Y. Iourov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Iourov, I.Y. (2017). Quantitative Fluorescence In Situ Hybridization (QFISH). In: Wan, T. (eds) Cancer Cytogenetics. Methods in Molecular Biology, vol 1541. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6703-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6703-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6701-8

  • Online ISBN: 978-1-4939-6703-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics