Skip to main content

Computational Design of Ligand Binding Proteins

  • Protocol
  • First Online:
Computational Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1529))

Abstract

The ability to design novel small-molecule binding sites in proteins is a stringent test of our understanding of the principles of molecular recognition, and would have many practical applications, in synthetic biology and medicine. Here, we describe a computational method in the context of the macromolecular modeling suite Rosetta to designing proteins with sites featuring predetermined interactions to ligands of choice. The required inputs for the method are a model of the small molecule and the desired interactions (e.g., hydrogen bonding, electrostatics, steric packing), and a set of crystallographic structures of proteins containing existing or predicted binding pockets. Constellations of backbones surrounding the putative pocket are searched for compatibility with the desired binding site conception using RosettaMatch and surrounding amino acid side chain identities are optimized using RosettaDesign. Validation of the design is performed using metrics that evaluate the interface energy of the predicted binding pose, the preformation of key binding site features in the apo-state, and the local compatibility of the designed sequence changes with the wild type backbone structure, and top-ranking candidate designs are generated for experimental validation. This approach can allow for the creation of novel binding sites and for the rational tuning of specificity for congeneric ligands by altering the programmed interactions by design, thus offering a general computational protocol for construction and modulation of protein–small molecule interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Wolf FA, Brett GM (2000) Ligand-binding proteins: their potential for application in systems for controlled delivery and uptake of ligands. Pharmacol Rev 52(2):207–236

    PubMed  Google Scholar 

  2. Hunter MM, Margolies MN, Ju A, Haber E (1982) High-affinity monoclonal antibodies to the cardiac glycoside, digoxin. J Immunol 129(3):1165–1172

    CAS  PubMed  Google Scholar 

  3. Shen XY, Orson FM, Kosten TR (2012) Vaccines against drug abuse. Clin Pharmacol Ther 91:60–70

    Article  CAS  PubMed  Google Scholar 

  4. Bradbury ARM, Sidhu S, Dübel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29(3):245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol 15(2):201–210. doi:10.1016/j.cbpa.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  6. Chen G, Hayhurst A, Thomas JG, Harvey BR, Iverson BL, Georgiou G (2001) Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nat Biotechnol 19(6):537–542

    Article  CAS  PubMed  Google Scholar 

  7. Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453(7192):190–195. doi:10.1038/nature06879

    Article  PubMed  Google Scholar 

  8. Jiang L, Althoff EA, Clemente FR, Doyle L, Rothlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF 3rd, Hilvert D, Houk KN, Stoddard BL, Baker D (2008) De novo computational design of retro-aldol enzymes. Science 319(5868):1387–1391. doi:10.1126/science.1152692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D (2010) Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329(5989):309–313. doi:10.1126/science.1190239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khersonsky O, Rothlisberger D, Dym O, Albeck S, Jackson CJ, Baker D, Tawfik DS (2010) Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series. J Mol Biol 396(4):1025–1042. doi:10.1016/j.jmb.2009.12.031

    Article  CAS  PubMed  Google Scholar 

  11. Khare SD, Fleishman SJ (2013) Emerging themes in the computational design of novel enzymes and protein-protein interfaces. FEBS Lett 587(8):1147–1154. doi:10.1016/j.febslet.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  12. Fleishman SJ, Khare SD, Koga N, Baker D (2011) Restricted sidechain plasticity in the structures of native proteins and complexes. Protein Sci 20(4):753–757. doi:10.1002/pro.604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korndörfer IP, Schlehuber S, Skerra A (2003) Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin. J Mol Biol 330(2):385–396

    Article  PubMed  Google Scholar 

  14. Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453(7192):190–195

    Article  PubMed  Google Scholar 

  15. Holm L, Rosenström P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38(suppl 2):W545–W549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci U S A 103(15):5869–5874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tokuriki N, Tawfik DS (2009) Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459(7247):668–673

    Article  CAS  PubMed  Google Scholar 

  18. Jeffrey PD, Strong RK, Sieker LC, Chang CY, Campbell RL, Petsko GA, Haber E, Margolies MN, Sheriff S (1993) 26-10 Fab–digoxin complex: affinity and specificity due to surface complementarity. Proc Natl Acad Sci U S A 90(21):10310–10314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D (2011) De novo enzyme design using Rosetta3. PLoS One 6(5), e19230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch E-M, Khare SD, Koga N, Ashworth J, Murphy P, Richter F, Lemmon G, Meiler J, Baker D (2011) RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS One 6(6), e20161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Davis IW, Baker D (2009) RosettaLigand docking with full ligand and receptor flexibility. J Mol Biol 385(2):381–392

    Article  CAS  PubMed  Google Scholar 

  22. Kellogg EH, Leaver-Fay A, Baker D (2010) Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79(3):830–838. doi:10.1002/prot.22921

    Article  PubMed  PubMed Central  Google Scholar 

  23. Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr Sect D 50(5), 760–763. doi: 10.1107/S0907444994003112

  24. Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234(4):946–950

    Article  CAS  PubMed  Google Scholar 

  25. Cooper S, Khatib F, Treuille A, Barbero J, Lee J, Beenen M, Leaver-Fay A, Baker D, Popovic Z, Players F (2010) Predicting protein structures with a multiplayer online game. Nature 466(7307):756–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fleishman SJ, Khare SD, Koga N, Baker D (2011) Restricted sidechain plasticity in the structures of native proteins and complexes. Protein Sci 20(4):753–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, DiMaio F, Lange O, Kinch L, Sheffler W, Kim B-H, Das R, Grishin NV, Baker D (2009) Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77(S9):89–99. doi:10.1002/prot.22540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501(7466):212–216. doi:10.1038/nature12443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar D. Khare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tinberg, C.E., Khare, S.D. (2017). Computational Design of Ligand Binding Proteins. In: Samish, I. (eds) Computational Protein Design. Methods in Molecular Biology, vol 1529. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6637-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6637-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6635-6

  • Online ISBN: 978-1-4939-6637-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics