Skip to main content

A Method for Large-Scale Screening of Random Sequence Libraries to Determine the Function of Unstructured Regions from Essential Proteins

  • Protocol
  • First Online:
Histones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1528))

  • 2160 Accesses

Abstract

In this chapter we present a method allowing the screening of random sequences to discover essential aspects of unstructured protein regions in yeast. The approach can be applied to any protein with unstructured peptide sequences for which functions are difficult to decipher, for example the N-terminal tails of histones. The protocol first describes the building and preparation of a large library of random peptides in fusion with a protein of interest. Recent technical advances in oligonucleotide synthesis allow the construction of long random sequences up to 35 residues long. The protocol details the screening of the library in yeast for sequences that can functionally replace an unstructured domain in an essential protein in vivo. Our method typically identifies sequences that, while being totally different from the wild type, retain essential features allowing yeast to live. This collection of proteins with functional synthetic sequences can subsequently be used in phenotypic tests or genetic screens in order to discover genetic interaction.

*These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  2. Kim JA, Hsu JY, Smith MM, Allis CD (2012) Mutagenesis of pairwise combinations of histone amino-terminal tails reveals functional redundancy in budding yeast. Proc Natl Acad Sci U S A 109:5779–5784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang W, Bone JR, Edmondson DG, Turner BM, Roth SY (1998) Essential and redundant functions of histone acetylation revealed by mutation of target lysines and loss of the Gcn5p acetyltransferase. EMBO J 17:3155–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma XJ, Lu Q, Grunstein M (1996) A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swe1 kinase in Saccharomyces cerevisiae. Genes Dev 10:1327–1340

    Article  CAS  PubMed  Google Scholar 

  5. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Gaudreau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Millau, JF., Guillemette, B., Gaudreau, L. (2017). A Method for Large-Scale Screening of Random Sequence Libraries to Determine the Function of Unstructured Regions from Essential Proteins. In: Guillemette, B., Gaudreau, L. (eds) Histones. Methods in Molecular Biology, vol 1528. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6630-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6630-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6628-8

  • Online ISBN: 978-1-4939-6630-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics