Skip to main content

Interaction Between Calcium and Phosphorus and the Relationship to Bone Health

  • Chapter
  • First Online:
Clinical Aspects of Natural and Added Phosphorus in Foods

Part of the book series: Nutrition and Health ((NH))

Abstract

Calcium and phosphorus metabolism are interconnected with effects on parathyroid hormone (PTH), 1,25-dihydroxyvitamin D (1,25 (OH)2D), serum, and urinary concentrations of both calcium and phosphorus including intestinal absorption, urinary excretion, and skeletal actions. Many studies have shown that an increased phosphorus (P) intake may have negative effects on the skeleton, whereas calcium (Ca) intake may have a protective effect on it. As there may be an optimal balance between the nutrients in relation to bone health, interest has been focused on the dietary Ca:P ratio. Both animal and human research data indicate that a low Ca:P ratio has a negative impact on the skeleton, but there is also suggestive evidence that if P intake is high, a high Ca intake does not completely counteract the adverse effect of a high P intake, especially if it derives from food additives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

1,25(OH)2D 1,25:

Dihydroxyvitamin D calcitriol

BALP:

Bone-specific alkaline phosphatase

BMD:

Bone mineral density

Ca:

Calcium

CTx:

Carboxy-terminal telopeptide of type I collagen

DPyr:

Deoxypyridinoline

FGF23:

Fibroblast growth factor 23

iCa:

Ionized calcium

K:

Potassium

Npt:

Sodium-dependent phosphate transporter

NTx:

Amino-terminal telopeptide of type I collagen

OC:

Osteocalcin

P:

Phosphorus

References

  1. Almaden Y, Hernandez A, Torregrosa V, Canalejo A, Sabate L, Fernandez Cruz L, Campistol JM, Torres A, Rodriguez M. High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol. 1998;9:1845–52.

    CAS  PubMed  Google Scholar 

  2. Basabe TB, Mena VMC, Faci VM, Aparicio VA, Lopez SAM, Ortega ARM. The influence of calcium and phosphorus intake on bone mineral density in young women. Arch Latinoam Nutr. 2004;54:203–8.

    Google Scholar 

  3. Bell RR, Tzeng DY, Draper HH. Long-term effects of calcium, phosphorus and forced exercise on the bones of mature mice. J Nutr. 1980;110:1161–8.

    CAS  Google Scholar 

  4. Brixen K, Nielsen HK, Charles P, Mosekilde L. Effects of a short course of oral phosphate treatment on serum parathyroid hormone (1–84) and biochemical markers of bone turnover: a dose–response study. Calcif Tissue Int. 1992;51:276–81.

    Article  CAS  PubMed  Google Scholar 

  5. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993;366:575–80.

    Article  CAS  PubMed  Google Scholar 

  6. Brown EM, Lian JB. New insights in bone biology: unmasking skeletal effects of the extracellular calcium-sensing receptor. Sci Signal. 2008;35:40.

    Google Scholar 

  7. Calvo MS. Dietary phosphorus, calcium metabolism and bone. J Nutr. 1993;123:1627–33.

    CAS  PubMed  Google Scholar 

  8. Calvo MS, Eastell R, Offord KP, Bergstrahl EJ, Burritt MF. Circadian variation in ionized calcium and intact parathyroid hormone: evidence for sex differences in calcium homeostasis. J Clin Endocrinol Metab. 1991;72:69–76.

    Article  CAS  PubMed  Google Scholar 

  9. Calvo MS, Heath 3rd H. Acute effects of oral phosphate-salt ingestion on serum phosphorus, serum ionized calcium, and parathyroid hormone in young adults. Am J Clin Nutr. 1988;47:1025–9.

    CAS  PubMed  Google Scholar 

  10. Calvo MS, Kumar R, Heath H. Persistently elevated parathyroid hormone secretion and actionin young women after four weeks of ingesting high phosphorus, low calcium diets. J Clin Endocrinol Metab. 1990;70:1334–40.

    Article  CAS  PubMed  Google Scholar 

  11. Calvo MS, Park YK. Changing phosphorus content of the U.S. diet: potential for adverse effects on bone. J Nutr. 1996;126:1168S–80.

    CAS  PubMed  Google Scholar 

  12. Charles P. Calcium absorption and calcium bioavailability. J Intern Med. 1992;231:161–8.

    Google Scholar 

  13. Chwojnowska Z, Charzewska J, Chabros E, Wajszczyk B, Rogalska-Niedswieds M, Jarosz B. Contents of calcium and phosphorus in the diet of youth from Warsaw elementary schools. Rocz Panstw Zakl Hig. 2002;53:157–65.

    CAS  PubMed  Google Scholar 

  14. Clark I. Importance of dietary Ca:PO4 ratios on skeletal, Ca, Mg, and PO4 metabolism. Am J Physiol. 1969;217:865–70.

    CAS  PubMed  Google Scholar 

  15. Dawson-Hughes B, Harris S, Dallal GE. Serum ionized calcium, as well as phosphorus and parathyroid hormone, is associated with plasma 1,25-dihydroxyvitamin D3 concentrations in normal postmenopausal women. J Bone Miner Res. 1991;6:461–8.

    Article  CAS  PubMed  Google Scholar 

  16. Estepa JC, Aguilera-Tejero E, Lopez I, Almaden Y, Rodriguez M, Felsenfeld AJ. Effect of phosphate on parathyroid hormone secretion in vivo. J Bone Miner Res. 1999;14:1848–54.

    Article  CAS  PubMed  Google Scholar 

  17. Favus MJ, Goltzman D. Regulation of calcium and magnesium. In: Rosen JF, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington: The Sheridan Press; 2008. p. 104–8.

    Google Scholar 

  18. Food and Nutrition Board, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, National Research Council, Institute of Medicine. Dietary reference intakes: calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington: National Academy Press; 1997.

    Google Scholar 

  19. Garabedian M, Holick MF, Deluca HF, Boyle IT. Control of 25-hydroxycholecalciferol metabolism by parathyroid glands. Proc Natl Acad Sci U S A. 1972;69:1673–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gonnelli S, Cepollaro C, Camporeale A, Nardi P, Rossi S, Gennari C. Acute biochemical variations induced by two different calcium salts in healthy perimenopausal women. Calcif Tissue Int. 1995;57:175–7.

    Article  CAS  PubMed  Google Scholar 

  21. Grimm M, Muller A, Hein G, Funfstuck R, Jahreis G. High phosphorus intake only slightly affects serum minerals, urinary pyridinium crosslinks and renal function in young women. Eur J Clin Nutr. 2001;55:153–61.

    Article  CAS  PubMed  Google Scholar 

  22. Guillemant J, Guillemant S. Comparison of the suppressive effect of two doses (500 mg vs 1500 mg) of oral calcium on parathyroid hormone secretion and on urinary cyclic AMP. Calcif Tissue Int. 1993;53:304–6.

    Article  CAS  PubMed  Google Scholar 

  23. Guillemant J, Le H-T, Accarie C, du Montcel ST, Delabroise A-M, Arnaud MJ, et al. Mineral water as a source of dietary calcium: acute effects on parathyroid function and bone resorptionin young men. Am J Clin Nutr. 2000;71:999–1002.

    CAS  PubMed  Google Scholar 

  24. Guillemant J, Oberlin F, Bourgeois P, Guillemant S. Age-related effect of a single oral dose of calcium on parathyroid function:relationship with vitamin D status. Am J Clin Nutr. 1994;60:403–7.

    CAS  PubMed  Google Scholar 

  25. Harvey JA, Zobitz MM, Pak CYC. Dose dependency of calcium absorption: a comparison of calcium carbonate and calcium citrate. J Bone Miner Res. 1988;3:253–8.

    Article  CAS  PubMed  Google Scholar 

  26. Heaney RP. Dietary protein and phosphorus do not affect calcium absorption. Am J Clin Nutr. 2000;72:675–6.

    Google Scholar 

  27. Heaney RP, Nordin BEC. Calcium effects on phosphorus absorption:Implications for theprevention and co-therapy of osteoporosis. J Am Coll Nutr. 2002;21:239–44.

    Article  CAS  Google Scholar 

  28. Heaney RP, Recker RR. Effects of nitrogen, phosphorus, and caffeine on calcium balance in women. J Lab Clin Med. 1982;99:46–55.

    CAS  PubMed  Google Scholar 

  29. Hegsted M, Schuette SA, Zemel MB, Linkswiler HM. Urinary calcium and calcium balance in young men as affected by level of protein and phosphorus intake. J Nutr. 1981;111:553–62.

    CAS  PubMed  Google Scholar 

  30. Herfarth K, Drechsler S, Imhoff W, Schlander M, Engelbach M, Maier A, et al. Calcium regulating hormones after oral and intravenous calcium administration. Eur J Clin Chem Clin Biochem. 1992;30:815–22.

    CAS  Google Scholar 

  31. Herfarth K, Schmidt-Gayk H, Graf S, Maier A. Circadian rhythm and pulsatility of parathyroid hormone secretion in man. Clin Endocrinol (Oxf). 1992;37:511–9.

    Article  CAS  Google Scholar 

  32. Hill KM, Braun M, Kern M, Martin BR, Navalta JW, Sedlock DA, et al. Predictors of calciumretention in adolescent boys. J Clin Endocrinol Metab. 2008;93:4743–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Horowitz M, Wishart JM, Goh D, Morrison HA, Need AG, Nordin BEJ. Oral calcium suppresses biochemical markers of bone resorption in normal men. Am J Clin Nutr. 1994;60:965–8.

    CAS  PubMed  Google Scholar 

  34. Huttunen MM, Tillman I, Viljakainen HT, Tuukkanen J, Peng Z, Pekkinen M, et al. High dietary phosphate intake reduces bone strength in the growing rat skeleton. J Bone Miner Res. 2007;22:83–92.

    Article  CAS  PubMed  Google Scholar 

  35. Karp HJ, Vaihia KP, Kärkkäinen MUM, Niemistö MJ, Lamberg-Allardt CJE. Acute effects of different phosphorus sources on calcium and bone metabolism in young women: a whole foods approach. Calcif Tissue Intl. 2007;80:251–8.

    Article  CAS  Google Scholar 

  36. Kemi VE, Kärkkäinen MUM, Lamberg-Allardt CJE. High phosphorus intakes acutely and negatively affect Ca and bone metabolism in a dose dependent manner in healthy young females. Br J Nutr. 2006;96:545–52.

    CAS  PubMed  Google Scholar 

  37. Kemi VE, Kärkkäinen MUM, Karp HJ, Laitinen KAE, Lamberg-Allardt CJE. Increased calcium intake does not completely counteract the effects of increased phosphorus intake on bone: an acute dose–response study in healthy females. Br J Nutr. 2008;99:832–9.

    Article  CAS  PubMed  Google Scholar 

  38. Kemi VE, Rita HJ, Kärkkäinen MUM, Viljakainen HT, Laaksonen MM, Outila TA, Lamberg-Allardt CJE. Habitual high phosphorus intakes and foods with phosphate additives negatively affect serum parathyroid hormone concentration: a cross-sectional study on healthy premenopausal women. Public Health Nutr. 2009;12:1885–92.

    Article  PubMed  Google Scholar 

  39. Kemi VE, Kärkkäinen MUM, Rita HJ, Laaksonen MML, Outila TA, Lamberg-Allardt CJE. Low calcium:phosphorus ratio in habitual diets affects serum parathyroid hormone concentration and calcium metabolism in healthy women with adequate calcium intake. Br J Nutr. 2010;103:561–8.

    Article  CAS  Google Scholar 

  40. Kilav R, Silver J, Naveh-Many T. Parathyroid hormone gene expression in hypophosphatemic rats. J Clin Invest. 1995;96:327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koshihara M, Masuyama R, Uehara M, Suzuki K. Reduction in dietary calcium/phosphorus ratioreduces bone mass and strength in ovariectomized rats enhancing bone turnover. Biosci Biotechnol Biochem. 2005;69:1970–3.

    Article  CAS  PubMed  Google Scholar 

  42. Koshihara M, Katsumata S, Uehara M, Suzuki K. Effects of dietary phosphorus intake on bone mineralization and calcium absorption in adult female rats. Biosci Biotechnol Biochem. 2005;69:1025–8.

    Article  CAS  PubMed  Google Scholar 

  43. Krook L, Lutwak L, Henrikson P-A, Kallfelz F, Hirsch C, Romanus B, et al. Reversibility ofnutritional osteoporosis: physicochemical data on bones from an experimental study in dogs. J Nutr. 1971;101:233–46.

    CAS  Google Scholar 

  44. Kärkkäinen M, Lamberg-Allardt C. An acute intake of phosphate increases parathyroid hormonesecretion and inhibits bone formation in young women. J Bone Miner Res. 1996;11:1905–12.

    Article  PubMed  Google Scholar 

  45. Kärkkäinen MU, Lamberg-Allardt CJ, Ahonen S, Välimäki M. Does it make a difference how and when you take your calcium? The acute effects of calcium on calcium and bone metabolism. Am J Clin Nutr. 2001;74:335–42.

    PubMed  Google Scholar 

  46. Kärkkäinen M, Wiersma JW, Lamberg-Allardt CJ. Postprandial parathyroid hormone response tofour calcium-rich foodstuffs. Am J Clin Nutr. 1997;65:1726–30.

    Google Scholar 

  47. Lajeunesse D, Bouhtiauy I, Brunette MG. Parathyroid hormone and hydrochlorothiazide increase calcium transport by the luminal membrane of rabbit distal nephron segments through differentpathways. Endocrinology. 1994;134:35–41.

    Article  CAS  PubMed  Google Scholar 

  48. Lamberg-Allardt CJ, Outila TA, Kärkkäinen MU, Rita HJ, Valsta LM. Vitamin D deficiency and bone health in healthy adults in Finland: could this be a concern in other parts of Europe? J Bone Miner Res. 2001;16:2066–73.

    Article  CAS  PubMed  Google Scholar 

  49. Lau K, Goldfarb S, Goldberg M, Agus ZS. Effects of phosphate administration on tubular calcium transport. J Lab Clin Med. 1982;99:317–24.

    CAS  PubMed  Google Scholar 

  50. Leichsering JM, Norris LM, Lamison SA, Wilson ED, Patton MB. The effect of level of intake on calcium and phosphorus metabolism in college women. J. Nutrition. 1951;45:407–18.

    Google Scholar 

  51. Lemann Jr J, Pleuss JA, Gray RW. Potassium causes calcium retention in healthy adults. J Nutr. 1993;123:1623–6.

    CAS  PubMed  Google Scholar 

  52. Lukert BP, Carey M, McCarty B, Tiemann S, Goodnight L, Helm M, et al. Influence of nutritional factors on calcium-regulating hormones and bone loss. Calcif Tissue Int. 1987;40:119–25.

    Article  CAS  PubMed  Google Scholar 

  53. Markowitz ME, Arnaud S, Rosen JF, Thorpy M, Laximinarayan S. Temporal interrelationships between the circadian rhythms of serum parathyroid hormone and calcium concentrations. J Clin Endocrinol Metab. 1988;67:1068–73.

    Article  CAS  PubMed  Google Scholar 

  54. Matkovic V, Ilich JZ, Andon MB, Hsieh LC, Tzagournis MA, Lagger BJ, et al. Urinary calcium, sodium, and bone mass of young females. Am J Clin Nutr. 1995;62:417–25.

    CAS  PubMed  Google Scholar 

  55. Metz JA, Anderson JJ, Gallagher Jr PN. Intakes of calcium, phosphorus, and protein, and physical-activity level are related to radial bone mass in young adult women. Am J Clin Nutr. 1993;58:537–42.

    CAS  Google Scholar 

  56. Miyamoto K, Tatsumi S, Segawa H, Morita K, Nii T, Fujioka A. Regulation of PiT-1, a sodium-dependent phosphate co-transporter in rat parathyroid glands. Nephrol Dial Transplant. 1999;14 Suppl 1:S73–5.

    Article  Google Scholar 

  57. Mortensen L, Charles P. Bioavailability of calcium supplements and the effect of vitamin D: comparison between milk, calcium carbonate, and calcium carbonate plus vitamin D. Am J Clin Nutr. 1996;63:354–7.

    CAS  Google Scholar 

  58. Nordic Council of Ministers: Nordic Nutrition Recommendations 2012. Copenhagen: Nordisk Ministerråd; 2013. Norden 2014:002

    Google Scholar 

  59. Nolan CR, Qunibi WY. Calcium salts in the treatment of hyperphosphatemia in hemodialysis patients. Curr Opin Nephrol Hypertens. 2003;12:373–9.

    Article  CAS  PubMed  Google Scholar 

  60. Patton MB, Wilson ED, Leichsenring JM, Norris LM, Dienhart CM. The relation of calcium-to-phosphorusratio to the utilization of these minerals by 18 young college women. J Nutr. 1953;50:373–82.

    CAS  PubMed  Google Scholar 

  61. Penido MG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol. 2012;27:2039–48.

    Article  PubMed Central  Google Scholar 

  62. Portale AA, Booth BE, Halloran BP, Morris Jr CR. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73:1580–9.

    Article  CAS  PubMed Central  Google Scholar 

  63. Portale AA, Halloran BP, Morris Jr RC. Dietary intake of phosphorus modulates the circadian rhythm in serum concentration of phosphorus: implications for the renal production of 1,25-dihydroxyvitamin D. J Clin Invest. 1987;80:1147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Portale AA, Halloran BP, Morris Jr RC. Physiologic regulation of the serum concentrations of 1,25-dihydroxyvitamin D by phosphorus in normal men. J Clin Invest. 1989;83:1494–9.

    Article  CAS  PubMed Central  Google Scholar 

  65. Portale AA, Halloran BP, Murphy MM, Morris Jr CM. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate on humans. J Clin Invest. 1986;77:7–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prince RL, Dick I, Garcia-Webb P, Retallack RW. The effects of the menopause on calcitriol and parathyroid hormone: responses to a low dietary calcium stress test. J Clin Endocrinol Metab. 1990;70:1119–23.

    Article  CAS  PubMed  Google Scholar 

  67. Rafferty K, Davies KM, Heaney RP. Potassium intake and the calcium economy. J Am Coll Nutr. 2005;24:99–106.

    Article  CAS  PubMed  Google Scholar 

  68. Reiss E, Canterbury JM, Bercovitz MA, Kaplan EL. The role of phosphate in the secretion of parathyroid hormone in man. J Clin Invest. 1970;49:2146–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rubinacci A, Melzi R, Zampino M, Soldarini A, Villa I. Total and free deoxypyridinoline after acute osteoclast activity inhibition. Clin Chem. 1999;45:1510–16.

    Google Scholar 

  70. Sadideen H, Swaminathan R. Effect of acute oral calcium load on serum PTH and bone resorption in young healthy subjects: an overnight study. Eur J Clin Nutr. 2004;58:1661–5.

    Article  CAS  PubMed  Google Scholar 

  71. Sax L. The Institute of Medicine’s “Dietary reference intake” for phosphorus: a critical perspective. J Am Coll Nutr. 2001;20:271–8.

    Article  CAS  PubMed  Google Scholar 

  72. Schmitt CP, Schaefer F, Bruch A, Veldhuis JD, Schmidt-Gayk H, Stein G, et al. Control of pulsatile and tonic parathyroid hormone secretion by ionized calcium. J Clin Endocrinol Metab. 1996;81:4236–43.

    CAS  PubMed  Google Scholar 

  73. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, et al. Type IIc sodiumdependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol. 2009;20:104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shah BG, Krishnarao GV, Draper HH. The relationship of Ca and P nutrition during adult life and osteoporosis in aged mice. J Nutr. 1967;92:30–42.

    CAS  PubMed  Google Scholar 

  75. Silverberg SJ, Shane E, Clemens TL, Dempster DW, Segre GV, Lindsay R, et al. The effect of oral phosphate administration on major indices of skeletal metabolism in normal subjects. J Bone Miner Res. 1986;1:383–8.

    Article  CAS  PubMed  Google Scholar 

  76. Slatopolsky E, Finch J, Denda M, Ritter C, Zhong M, Dusso A, et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion invitro. J Clin Invest. 1996;97:2534–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Spencer H, Kramer L, Osis D, Norris C. Effect of phosphorus on the absorption of calcium and on the calcium balance in man. J Nutr. 1978;108:447–57.

    CAS  Google Scholar 

  78. Tatsumi S, Segawa H, Morito K, Haga H, Kouda T, Yamamoto H, et al. Molecular cloning and hormonal regulation of PiT-1, a sodium-dependent phosphate cotransporter from rat parathyroid gland. Endocrinology. 1998;139:1692–9.

    Article  CAS  PubMed  Google Scholar 

  79. Teegarden D, Legowski P, Gunther CW, McCabe GP, Peacock M, Lyle RM. Dietary calcium intake protects women consuming oral contraceptives from spine and hip bone loss. J Clin Endocrinol Metab. 2005;90:5127–33.

    Article  CAS  PubMed  Google Scholar 

  80. Wastney ME, Martin BR, Peacock M, Smith D, Jiang X-Y, Jackman LA, Weawer CM. Changes in calcium kinetics in adolescent girls induced by high calcium intake. J Clin Endocrinol. 2000;85:4470–5.

    CAS  Google Scholar 

  81. Whybro A, Jagger H, Barker M, Eastell R. Phosphate supplementation in young men: lack of effecton calcium homeostasis and bone turnover. Eur J Clin Nutr. 1998;52:29–33.

    Article  CAS  PubMed  Google Scholar 

  82. Yano K, Heilbrun LK, Wasnich RD, Hankin JH, Vogel JM. The relationship between diet and bone mineral content of multiple skeletal sites in elderly Japanese-American men and women living in Hawaii. Am J Clin Nutr. 1985;42:877–88.

    CAS  PubMed  Google Scholar 

  83. Yoshida T, Yoshida N, Monkawa T, Hayashi M, Saruta T. Dietary phosphorus deprivation induces 25-hydroxyvitamin D3 1(alpha)-hydroxylase gene expression. Endocrinology. 2001;142:1720–6.

    Article  CAS  PubMed  Google Scholar 

  84. Zemel MB, Linkswiler HM. Calcium metabolism in the young adult male as affected by level and form of phosphorus intake and level of calcium intake. J Nutr. 1981;111:315–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christel Lamberg-Allardt PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lamberg-Allardt, C., Kemi, V. (2017). Interaction Between Calcium and Phosphorus and the Relationship to Bone Health. In: Gutiérrez, O., Kalantar-Zadeh, K., Mehrotra, R. (eds) Clinical Aspects of Natural and Added Phosphorus in Foods. Nutrition and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6566-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6566-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6564-9

  • Online ISBN: 978-1-4939-6566-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics