Skip to main content

microRNA Target Prediction

  • Protocol
  • First Online:
Book cover Cancer Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1513))

Abstract

microRNAs are short RNAs that reduce gene expression by binding to their targets. Computational predictions indicate that all human genes may be regulated by microRNAs, with each microRNA possibly targeting thousands of genes. Commonly used software will produce a prohibitive number of predicted targets for each microRNA. Here I describe procedures that refine these predictions by integrating available software and expression data from experiments available online. These procedures are tailored to experiments where predicting true targets is more important than detecting all putative targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Google Scholar 

  2. Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364. doi:10.1038/ng865

    Article  CAS  PubMed  Google Scholar 

  3. Ritchie W, Flamant S, Rasko JE (2009) Predicting microRNA targets and functions: traps for the unwary. Nat Methods 6:397–398. doi:10.1038/nmeth0609-397, nmeth0609-397 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. doi:10.1101/gr.082701.108, gr.082701.108 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. John B, Enright AJ, Aravin A et al (2004) Human MicroRNA targets. PLoS Biol 2:e363

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fan X, Kurgan L (2014) Comprehensive overview and assessment of computational prediction of microRNA targets in animals. Brief Bioinform 16:780–794. doi:10.1093/bib/bbu044

    Article  PubMed  Google Scholar 

  7. Ritchie W, Flamant S, Rasko JE (2010) mimiRNA: a microRNA expression profiler and classification resource designed to identify functional correlations between microRNAs and their targets. Bioinformatics 26:223–227. doi:10.1093/bioinformatics/btp649, btp649 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Krek A, Grün D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  9. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  CAS  PubMed  Google Scholar 

  10. Ritchie W, Rajasekhar M, Flamant S, Rasko JE (2009) Conserved expression patterns predict microRNA targets. PLoS Comput Biol 5:e1000513. doi:10.1371/journal.pcbi.1000513

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alexiou P, Maragkakis M, Papadopoulos GL et al (2009) Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 25:3049–3055. doi:10.1093/bioinformatics/btp565

    Article  CAS  PubMed  Google Scholar 

  12. Xiao F, Zuo Z, Cai G et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110. doi:10.1093/nar/gkn851

    Article  CAS  PubMed  Google Scholar 

  13. Yang JH, Li JH, Shao P et al (2011) starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39:D202–D209. doi:10.1093/nar/gkq1056

    Article  CAS  PubMed  Google Scholar 

  14. Vergoulis T, Vlachos IS, Alexiou P et al (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229. doi:10.1093/nar/gkr1161

    Article  CAS  PubMed  Google Scholar 

  15. Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798, doi:S0092867403010183 [pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Ritchie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ritchie, W. (2017). microRNA Target Prediction. In: Kasid, U., Clarke, R. (eds) Cancer Gene Networks. Methods in Molecular Biology, vol 1513. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6539-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6539-7_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6537-3

  • Online ISBN: 978-1-4939-6539-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics