Skip to main content

Seamless Ligation Cloning Extract (SLiCE) Method Using Cell Lysates from Laboratory Escherichia coli Strains and its Application to SLiP Site-Directed Mutagenesis

  • Protocol
  • First Online:
In Vitro Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1498))

Abstract

Cell lysates from laboratory Escherichia coli strains endogenously exhibit homologous recombination activity, which can be utilized for seamless DNA cloning in vitro. This method, termed Seamless Ligation Cloning Extract (SLiCE) cloning, enables high cloning efficiency with simultaneous integration of two unpurified DNA fragments into a vector. In addition, the SLiCE method is highly cost-effective, as several laboratory E. coli strains may be utilized as sources of SLiCE. Previously, the SLiCE technique has been applied to site-directed mutagenesis to develop a novel technique termed SLiCE-mediated polymerase chain reaction (PCR)-based site-directed mutagenesis (SLiP site-directed mutagenesis). Two DNA fragments containing a mutation site can be simultaneously integrated into a vector while avoiding the introduction of undesirable mutations in the vector. Therefore, SLiP site-directed mutagenesis simplifies multiple procedures involved in PCR-based site-directed mutagenesis such as overlap extension method PCR or the Megaprimer method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  2. Klock HE, Koesema EJ, Knuth MW, Lesley SA (2008) Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins 71:982–994

    Article  CAS  PubMed  Google Scholar 

  3. Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS One 4, e6441

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59

    Article  CAS  PubMed  Google Scholar 

  5. Thieme F, Marillonnet S (2014) Quick and clean cloning. Methods Mol Biol 1116:37–48

    Article  CAS  PubMed  Google Scholar 

  6. Chino A, Watanabe K, Moriya H (2010) Plasmid construction using recombination activity in the fission yeast Schizosaccharomyces pombe. PLoS One 5, e9652

    Article  PubMed  PubMed Central  Google Scholar 

  7. Matsuo Y, Kishimoto H, Horiuchi T, Tanae K, Kawamukai M (2010) Simple and effective gap-repair cloning using short tracts of flanking homology in fission yeast. Biosci Biotechnol Biochem 74:685–689

    Article  CAS  PubMed  Google Scholar 

  8. Goto K, Nagano Y (2013) Ultra-low background DNA cloning system. PLoS One 8, e56530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hamilton MD, Nuara AA, Gammon DB, Buller RM, Evans DH (2007) Duplex strand joining reactions catalyzed by vaccinia virus DNA polymerase. Nucleic Acids Res 35:143–151

    Article  CAS  PubMed  Google Scholar 

  10. Zhu B, Cai G, Hall EO, Freeman GJ (2007) In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques 43:354–359

    Article  CAS  PubMed  Google Scholar 

  11. Gibson DG, Smith HO, Hutchison CA 3rd, Venter JC, Merryman C (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7:901–903

    Article  CAS  PubMed  Google Scholar 

  12. Baek CH, Chesnut J, Katzen F (2015) Positive selection improves the efficiency of DNA assembly. Anal Biochem 476:1–4

    Article  CAS  PubMed  Google Scholar 

  13. Lanyon-Hogg T, Masumoto N, Bodakh G, Konitsiotis AD, Thinon E, Rodgers UR, Owens RJ, Magee AI, Tate EW (2015) Click chemistry armed enzyme-linked immunosorbent assay to measure palmitoylation by hedgehog acyltransferase. Anal Biochem 490:66–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nakagawa Y, Sakuma T, Sakamoto T, Ohmuraya M, Nakagata N, Yamamoto T (2015) Production of knockout mice by DNA microinjection of various CRISPR/Cas9 vectors into freeze-thawed fertilized oocytes. BMC Biotechnol 15:33

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dovala D, Sawyer WS, Rath CM, Metzger LE (2016) Rapid analysis of protein expression and solubility with the SpyTag-SpyCatcher system. Protein Expr Purif 117:44–51

    Article  CAS  PubMed  Google Scholar 

  17. Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751–813

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Muyrers JP, Zhang Y, Buchholz F, Stewart AF (2000) RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev 14:1971–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lovett ST, Hurley RL, Sutera VA Jr, Aubuchon RH, Lebedeva MA (2002) Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways. Genetics 160:851–859

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dutra BE, Sutera VA Jr, Lovett ST (2007) RecA-independent recombination is efficient but limited by exonucleases. Proc Natl Acad Sci U S A 104:216–221

    Article  CAS  PubMed  Google Scholar 

  21. Persky NS, Lovett ST (2008) Mechanisms of recombination: lessons from E. coli. Crit Rev Biochem Mol Biol 43:347–370

    Article  CAS  PubMed  Google Scholar 

  22. Motohashi K (2015) A simple and efficient seamless DNA cloning method using SLiCE from Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis. BMC Biotechnol 15:47

    Article  PubMed  PubMed Central  Google Scholar 

  23. Okegawa Y, Motohashi K (2015) A simple and ultra-low cost homemade seamless ligation cloning extract (SLiCE) as an alternative to a commercially available seamless DNA cloning kit. Biochem Biophys Rep 4:148–151

    Google Scholar 

  24. Okegawa Y, Motohashi K (2015) Evaluation of seamless ligation cloning extract preparation methods from an Escherichia coli laboratory strain. Anal Biochem 486:51–53

    Article  CAS  PubMed  Google Scholar 

  25. Li C, Wen A, Shen B, Lu J, Huang Y, Chang Y (2011) FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol 11:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacobus AP, Gross J (2015) Optimal cloning of PCR fragments by homologous recombination in Escherichia coli. PLoS One 10, e0119221

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kostylev M, Otwell AE, Richardson RE, Suzuki Y (2015) Cloning should be simple: Escherichia coli DH5alpha-mediated assembly of multiple DNA fragments with short end homologies. PLoS One 10, e0137466

    Article  PubMed  PubMed Central  Google Scholar 

  28. Beyer HM, Gonschorek P, Samodelov SL, Meier M, Weber W, Zurbriggen MD (2015) AQUA cloning: a versatile and simple enzyme-free cloning approach. PLoS One 10, e0137652

    Article  PubMed  PubMed Central  Google Scholar 

  29. Papworth C, Bauer JC, Braman J, Wright DA (1996) Site-directed mutagenesis in one day with >80% efficiency. Strategies 9:3–4

    Article  Google Scholar 

  30. Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  CAS  PubMed  Google Scholar 

  32. Sarkar G, Sommer SS (1990) The “megaprimer” method of site-directed mutagenesis. Biotechniques 8:404–407

    CAS  PubMed  Google Scholar 

  33. Landt O, Grunert HP, Hahn U (1990) A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96:125–128

    Article  CAS  PubMed  Google Scholar 

  34. Okegawa Y, Koshino M, Okushima T, Motohashi K (2016) Application of preparative disk gel electrophoresis for antigen purification from inclusion bodies. Protein Expr Purif 118:77–82

    Article  CAS  PubMed  Google Scholar 

  35. Okegawa Y, Motohashi K (2016) Expression of spinach ferredoxin-thioredoxin reductase using tandem T7 promoters and application of the purified protein for in vitro light-dependent thioredoxin-reduction system. Protein Expr Purif 121:46–51

    Google Scholar 

Download references

Acknowledgments

I thank Yuki Okegawa for critically reading the manuscript. This work was supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (to K.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Motohashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Motohashi, K. (2017). Seamless Ligation Cloning Extract (SLiCE) Method Using Cell Lysates from Laboratory Escherichia coli Strains and its Application to SLiP Site-Directed Mutagenesis. In: Reeves, A. (eds) In Vitro Mutagenesis. Methods in Molecular Biology, vol 1498. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6472-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6472-7_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6470-3

  • Online ISBN: 978-1-4939-6472-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics