Skip to main content

Activity-Based Protein Profiling: From Chemical Novelty to Biomedical Stalwart

  • Protocol
  • First Online:
Activity-Based Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1491))

Abstract

Biological systems often respond to environmental changes by rapidly altering the activity of specific enzymes: for example through desequesterization of enzyme activities by dissociation from inhibitors, activation/deactivation through posttranslational modification, or relocation of the enzyme to different organelles. This means that expression levels of enzymes do not necessarily correlate with the activities observed for these enzymes. In this chapter we review some of the approaches used to selectively image only the active sub-populations of given enzymes, the so-called activity-based protein profiling. A focus lies on recent developments that are taking this approach from chemical novelty to biochemical stalwart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Willems LI, Overkleeft HS, van Kasteren SI (2014) Current developments in activity-based protein profiling. Bioconjug Chem 25(7):1181–1191

    Article  CAS  PubMed  Google Scholar 

  2. Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77(1):383–414, doi:10.1146/annurev.biochem.75.101304.124125

    Article  CAS  PubMed  Google Scholar 

  3. Ostrowski K, Barnard EA (1961) Application of isotopically labelled specific inhibitors as a method in enzyme cytochemistry. Exp Cell Res 25:465–468

    Article  CAS  PubMed  Google Scholar 

  4. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268(5211):726–731

    Article  CAS  PubMed  Google Scholar 

  5. Shi GP, Munger JS, Meara JP, Rich DH, Chapman HA (1992) Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J Biol Chem 267(11):7258–7262

    CAS  PubMed  Google Scholar 

  6. Bernstein KE, Welsh SL, Inman JK (1990) A deeply recessed active site in angiotensin-converting enzyme is indicated from the binding characteristics of biotin-spacer-inhibitor reagents. Biochem Biophys Res Commun 167(1):310–316, doi:http://dx.doi.org/10.1016/0006-291X(90)91766-L

    Article  CAS  PubMed  Google Scholar 

  7. Steven FS, Griffin MM, Williams LA, Clarke NW, Maier H (1991) Labelling of tumour cells with a biotinylated inhibitor of a cell surface protease. J Enzyme Inhib 4(4):337–346

    Article  CAS  PubMed  Google Scholar 

  8. Sin N, Meng L, Wang MQ, Wen JJ, Bornmann WG, Crews CM (1997) The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc Natl Acad Sci U S A 94(12):6099–6103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bogyo M, McMaster JS, Gaczynska M, Tortorella D, Goldberg AL, Ploegh H (1997) Covalent modification of the active site threonine of proteasomal beta subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc Natl Acad Sci U S A 94(13):6629–6634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL (2001) A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J 20(18):5187–5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ekkebus R, van Kasteren SI, Kulathu Y, Scholten A, Berlin I, Geurink PP, de Jong A, Goerdayal S, Neefjes J, Heck AJR, Komander D, Ovaa H (2013) On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J Am Chem Soc 135(8):2867–2870. doi:10.1021/ja309802n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sommer S, Weikart ND, Linne U, Mootz HD (2013) Covalent inhibition of SUMO and ubiquitin-specific cysteine proteases by an in situ thiol-alkyne addition. Bioorg Med Chem 21(9):2511–2517. doi:10.1016/j.bmc.2013.02.039

    Article  CAS  PubMed  Google Scholar 

  13. McGouran JF, Gaertner SR, Altun M, Kramer HB, Kessler BM (2013) Deubiquitinating enzyme specificity for ubiquitin chain topology profiled by di-ubiquitin activity probes. Chem Biol 20(12):1447–1455. doi:10.1016/j.chembiol.2013.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mulder MP, El Oualid F, Ter Beek J, Ovaa H (2014) A native chemical ligation handle that enables the synthesis of advanced activity-based probes: diubiquitin as a case study. ChemBioChem. doi:10.1002/cbic.201402012

    PubMed  PubMed Central  Google Scholar 

  15. Li G, Liang Q, Gong P, Tencer AH, Zhuang Z (2014) Activity-based diubiquitin probes for elucidating the linkage specificity of deubiquitinating enzymes. Chem Commun 50(2):216–218. doi:10.1039/c3cc47382a

    Article  CAS  Google Scholar 

  16. Liu Y, Patricelli MP, Cravatt BF (1999) Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci U S A 96(26):14694–14699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M (2000) Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem Biol 7(8):569–581

    Article  CAS  PubMed  Google Scholar 

  18. Blum G, Mullins SR, Keren K, Fonovic M, Jedeszko C, Rice MJ, Sloane BF, Bogyo M (2005) Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 1(4):203–209. doi:10.1038/nchembio728

    Article  CAS  PubMed  Google Scholar 

  19. Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M (2007) Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol 3(10):668–677. doi:10.1038/nchembio.2007.26

    Article  CAS  PubMed  Google Scholar 

  20. Edgington LE, Verdoes M, Ortega A, Withana NP, Lee J, Syed S, Bachmann MH, Blum G, Bogyo M (2013) Functional imaging of legumain in cancer using a New quenched activity-based probe. J Am Chem Soc 135(1):174–182. doi:10.1021/ja307083b

    Article  CAS  PubMed  Google Scholar 

  21. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MBD, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468(7325):790–U779. doi:10.1038/nature09472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh HL, Kessler BM (2002) Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme. Chem Biol 9(10):1149–1159. doi:10.1016/s1074-5521(02)00248-x

    Article  CAS  PubMed  Google Scholar 

  23. Niphakis MJ, Cravatt BF (2014) Enzyme inhibitor discovery by activity-based protein profiling. Annu Rev Biochem 83(1):341–377, doi:10.1146/annurev-biochem-060713-035708

    Article  CAS  PubMed  Google Scholar 

  24. Willems LI, Jiang J, Li KY, Witte MD, Kallemeijn WW, Beenakker TJ, Schroder SP, Aerts JM, van der Marel GA, Codee JD, Overkleeft HS (2014) From covalent glycosidase inhibitors to activity-based glycosidase probes. Chemistry 20(35):10864–10872. doi:10.1002/chem.201404014

    Article  CAS  PubMed  Google Scholar 

  25. Speers AE, Adam GC, Cravatt BF (2003) Activity-based protein profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 125(16):4686–4687

    Article  CAS  PubMed  Google Scholar 

  26. Ovaa H, van Swieten PF, Kessler BM, Leeuwenburgh MA, Fiebiger E, van den Nieuwendijk AM, Galardy PJ, van der Marel GA, Ploegh HL, Overkleeft HS (2003) Chemistry in living cells: detection of active proteasomes by a two-step labeling strategy. Angew Chem Int Ed Engl 42(31):3626–3629. doi:10.1002/anie.200351314

    Article  CAS  PubMed  Google Scholar 

  27. Arastu-Kapur S, Ponder EL, Fonovic UP, Yeoh S, Yuan F, Fonovic M, Grainger M, Phillips CI, Powers JC, Bogyo M (2008) Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. Nat Chem Biol 4(3):203–213. doi:10.1038/nchembio.70

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sander I. van Kasteren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

van Kasteren, S.I., Florea, B.I., Overkleeft, H.S. (2017). Activity-Based Protein Profiling: From Chemical Novelty to Biomedical Stalwart. In: Overkleeft, H., Florea, B. (eds) Activity-Based Proteomics. Methods in Molecular Biology, vol 1491. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6439-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6439-0_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6437-6

  • Online ISBN: 978-1-4939-6439-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics