Skip to main content

Pathophysiology of Hypertension in Chronic Kidney Disease and Dialysis

  • Chapter
  • First Online:
Core Concepts in Hypertension in Kidney Disease

Abstract

The extremely high prevalence of hypertension in CKD is an expected consequence of the central role played by the kidneys in the regulation of body fluid volumes and BP homeostasis. Kidney disease, regardless of etiology, tends to impair the efficiency of the salt excretory mechanisms albeit to a variable degree. This results in an increased BP salt sensitivity with a general potentiation of the prohypertensive mechanisms and a blunting of the effectiveness of the antihypertensive mechanisms. Therefore, hypertension in CKD patients also tends to be more resistant and difficult to control. Nevertheless, although there is variability in the contribution of individual hypertensive pathways and the severity of resulting hypertension in different disease states associated with CKD, the pathways usually converge in Na retention and/or an inadequate suppression of RAS. Accordingly, regardless of the nature and complexity of the underlying pathogenesis of hypertension in CKD states, most such individuals are more responsive to therapeutic agents targeted to these pathways. Although difficult to achieve, effective BP control is necessary in these individuals to not only slow the further progression of CKD, but to also reduce the very high cardiovascular morbidity and mortality in these individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guyton AC. The surprising kidney fluid mechanism for pressure control—its infinite gain! Hypertension. 1990;16:725–30.

    Article  CAS  PubMed  Google Scholar 

  2. Guyton AC. Blood pressure control—special role of the kidneys and body fluids. Science. 1991;252:1813–6.

    Article  CAS  PubMed  Google Scholar 

  3. Cowley Jr AW. Long-term control of arterial blood pressure. Physiol Rev. 1992;72:231–300.

    PubMed  Google Scholar 

  4. Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, Hamza S, Speed J, Hall ME. Hypertension: physiology and pathophysiology. Compr Physiol. 2012;2:2393–442.

    PubMed  Google Scholar 

  5. Brands MW. Chronic blood pressure control. Compr Physiol. 2012;2:2481–94.

    PubMed  Google Scholar 

  6. Wadel HM, Textor SC. The role of the kidney in regulating arterial blood pressure. Nat Rev Nephrol. 2012;8:602–9.

    Google Scholar 

  7. Smith HW. From fish to philosopher. 1st ed. Boston: Little Brown; 1953. p. 264.

    Google Scholar 

  8. Romero JC, Knox FG. Mechanisms underlying pressure-related natriuresis: the role of the renin-angiotensin and prostaglandin systems. State of the art lecture. Hypertension. 1988;11:724–38.

    Article  CAS  PubMed  Google Scholar 

  9. Firth JD, Raine AEG, Ledingham JGG. The mechanism of pressure natriuresis. J Hypertens. 1990;8:97–103.

    Article  CAS  PubMed  Google Scholar 

  10. Hall JE, Mizelle HL, Hildebrandt DA, Brands MW. Abnormal pressure natriuresis. A cause or a consequence of hypertension? Hypertension. 1990;15:547–59.

    Article  CAS  PubMed  Google Scholar 

  11. Evans RG, Majid DSA, Eppel GA. Mechanisms mediating pressure natriuresis: what we know and what we need to find out. Clin Exp Pharm Physiol. 2005;32:400–9.

    Article  CAS  Google Scholar 

  12. Laragh JH. Nephron heterogeneity: clue to the pathogenesis of essential hypertension and effectiveness of angiotensin-converting enzyme inhibitor treatment. Am J Med. 1989;87 Suppl 68:2S–14.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson RJ, Rodriguez-Iturbe B, Nakagawa T, Kang D-H, Feig DI, Herrera-Acosta J. Subtle renal injury is likely a common mechanism for salt-sensitive essential hypertension. Hypertension. 2005;45:326–30.

    Article  CAS  PubMed  Google Scholar 

  14. Koomans HA, Roos JC, Boer P, Geyskes GG, Mess EJD. Salt sensitivity of blood pressure in chronic renal failure: evidence for renal control of body fluid distribution in man. Hypertension. 1982;4:190–7.

    Article  CAS  PubMed  Google Scholar 

  15. Koomans HA, Roos JC, Dorhout Mees EJ, Delawi IM. Sodium balance in renal failure. A comparison of patients with normal subjects under extremes of sodium intake. Hypertension. 1985;7:714–21.

    Article  CAS  PubMed  Google Scholar 

  16. Buckalew Jr VM, Berg RL, Wang SR, Porush JG, Rauch S, Schulman G. Prevalence of hypertension in 1,795 subjects with chronic renal disease: the modification of diet in renal disease study baseline cohort. Modification of diet in renal disease study group. Am J Kidney Dis. 1996;28:811–21.

    Article  PubMed  Google Scholar 

  17. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:S1–S266.

    Google Scholar 

  18. Vasavada N, Agarwal R. Role of excess volume in the pathophysiology of hypertension in chronic kidney disease. Kidney Int. 2003;64:1772–9.

    Article  PubMed  Google Scholar 

  19. Bidani AK, Griffin KA. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension. 2004;44:595–601.

    Article  CAS  PubMed  Google Scholar 

  20. Platinga LC, Miller 3rd ER, Stevens LA, Saran R, Messer K, Flowers N, Geiss L, Powe NR, Center for Disease Control and Prevention Chronic Kidney Disease Surveillance Team. Blood pressure control among persons without and with chronic kidney disease: US trends and risk factors 1999–2006. Hypertension. 2009;54:47–56.

    Google Scholar 

  21. Sarafidis PA, Li S, Chen SC, Collins AJ, Brown WW, Klag MJ, Bakris GL. Hypertension awareness, treatment, and control in chronic kidney disease. Am J Med. 2008;121:332–40.

    Article  PubMed  Google Scholar 

  22. Coleman TG, Bower JD, Langford HG, Guyton AC. Regulation of arterial pressure in the anephric state. Circulation. 1970;42:509–14.

    Article  CAS  PubMed  Google Scholar 

  23. Agarwal R. Systolic hypertension in hemodialysis patients. Semin Dial. 2003;16:334.

    Article  Google Scholar 

  24. Horl MP, Horl WH. Hemodialysis-associated hypertension: pathophysiology and therapy. Am J Kidney Dis. 2002;39:227–44.

    Article  PubMed  Google Scholar 

  25. Wilson J, Shah T, Nissenson AR. Role of sodium and volume in the pathogenesis of hypertension in hemodialysis. Semin Dial. 2004;27:260–4.

    Article  Google Scholar 

  26. Blankestijn PJ, Lightenberg G. Volume-independent mechanisms of hypertension in hemodialysis patients: clinical implications. Semin Dial. 2004;17:265–9.

    Article  PubMed  Google Scholar 

  27. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27(3 Pt. 2):481–490.

    Google Scholar 

  28. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–56.

    Article  CAS  PubMed  Google Scholar 

  29. Langston JB, Guyton AC, Douglas BH, Dorsett PE. Effect of changes in salt intake on arterial pressure and renal function in partially nephrectomized dogs. Circ Res. 1963;12:508–12.

    Article  CAS  Google Scholar 

  30. Griffin KA, Picken M, Bidani AK. Method of renal mass reduction is a critical modulator of subsequent hypertension and glomerular injury. J Am Soc Nephrol. 1994;4:2023–31.

    CAS  PubMed  Google Scholar 

  31. Correa-Rotter R, Hostette TH, Manivel JC, Rosenberg ME. Renin expression in renal ablation. Hypertension. 1992;20:483–90.

    Article  CAS  PubMed  Google Scholar 

  32. Griffin KA, Picken MM, Churchill M, Churchill P, Bidani AK. Functional and structural correlates of glomerulosclerosis after renal mass reduction in the rat. J Am Soc Nephrol. 2000;11:497–506.

    CAS  PubMed  Google Scholar 

  33. Kurtz TW, Dominiczak AF, DiCarlo SE, Pravenec M, Morris Jr RC. Molecular-based mechanisms of Mendelian forms of salt-dependent hypertension. Questioning the prevailing theory. Hypertension. 2015;65:932–41.

    Article  CAS  PubMed  Google Scholar 

  34. Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park J-K, Beck F-X, Muller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt K-U, Luft FC, Kerjaschki D, Titze J. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15:545–52.

    Article  CAS  PubMed  Google Scholar 

  35. Titze J. A different view on sodium balance. Curr Opin Nephrol Hypertens. 2015;24:14–20.

    Article  CAS  PubMed  Google Scholar 

  36. Dahlmann A, Dorfelt K, Eicher F, Linz P, Kopp C, Mossinger I, Horn S, Buschges-Seraphin B, Wabel P, Hammon M, Cavallaro A, Echardt KU, Kotanko P, Levin NW, Johannes B, Uder M, Luft FC, Muller DN, Titze JM. Magnetic resonance-determined sodium removal from tissue stores in hemodialysis patients. Kidney Int. 2015;87:434–41.

    Article  CAS  PubMed  Google Scholar 

  37. Aaron KJ, Sanders PW. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin Proc. 2013;88:987–95.

    Article  CAS  PubMed  Google Scholar 

  38. He FJ, MacGregor GA. Salt, blood pressure and cardiovascular disease. Curr Opin Cardiol. 2007;22:298–305.

    Article  PubMed  Google Scholar 

  39. Heerspink HJL, Navis G, Ritz E. Salt intake in kidney disease—a missed therapeutic opportunity? Nephrol Dial Transplant. 2012;27:3435–42.

    Article  CAS  Google Scholar 

  40. Navar LG, Inscho EW, Majid DSA, Imig JD, Harrison-Bernard LM, Mitchell KD. Paracrine regulation of the renal microcirculation. Physiol Rev. 1996;76:425–536.

    CAS  PubMed  Google Scholar 

  41. Semoes E, Silva AC, Flynn JT. The renin angiotensin aldosterone system in 2011: role in hypertension and chronic kidney disease. Pediatr Nephrol. doi:10.1007/s00467-0211-2002-y.

  42. Reudelhuber TL. The renin-angiotensin system: peptides and enzymes beyond angiotensin II. Curr Opin Nephrol Hypertens. 2005;14:155–9.

    Article  CAS  PubMed  Google Scholar 

  43. Ferrario CM. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst. 2006;7(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  44. Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev. 2003;24(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  45. Griffin KA, Bidani AK. Angiotensin II type 2 receptor in chronic kidney disease: the good side of angiotensin II? Kidney Int. 2009;75(10):1006–8.

    Article  CAS  PubMed  Google Scholar 

  46. Benndorf RA, Krebs C, Hirsch-Hoffman B, Schwedhelm E, Cieslar G, Schmidt-Haupt R, Steinmetz OM, Meyer-Schwesinger C, Thaiss F, Haddad M, Fehr S, Hellmann A, Helmchen U, Hein L, Ehmke H, Stahl RA, Boger RH, Wenzel UO. Angiotensin II type 2 receptor deficiency aggravates renal injury and reduces survival in chronic kidney disease in mice. Kidney Int. 2009;75(10):1039–49.

    Article  CAS  PubMed  Google Scholar 

  47. Casarini DE, Boim MA, Stella RC, Krieger-Azzolini MH, Krieger JE, Schor N. Angiotensin I-converting enzyme activity in tubular fluid along the rat nephron. Am J Physiol. 1997;272(3 Pt 2):F405–9.

    CAS  PubMed  Google Scholar 

  48. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.

    Article  CAS  PubMed  Google Scholar 

  49. Navar LG, Prieto MC, Satou R, Kobori H. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr Opin Pharmacol. 2011;11:180–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O, Le TH, Coffman TM. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci. 2006;103:17985–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Giani JF, Shah KH, Khan Z, Bernstein EA, Shen XA, McDonough AA, Gonzalez-Villalobos RA, Bernstein KE. The intrarenal generation of angiotensin II is required for experimental hypertension. Curr Opin Pharm. 2015;21:73–81.

    Article  CAS  Google Scholar 

  52. Harris RC, Neilson EG. Toward a unified theory of renal progression. Annu Rev Med. 2006;57:365–80.

    Article  CAS  PubMed  Google Scholar 

  53. Ruster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006;17:2985–91.

    Article  PubMed  CAS  Google Scholar 

  54. Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol. 1985;249:F324–37.

    CAS  PubMed  Google Scholar 

  55. Peti-Peterdi J, Komlosi P, Fuson AL, Guan Y, Schneider A, Qi Z, Redha R, Rosivall L, Breyer MD, Bell PD. Luminal NaC1 delivery regulates basolateral PGE2 release from macula densa cells. J Clin Invest. 2003;112:76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang L, Loutzenhiser K, Loutzenhiser R. Biphasic actions of prostaglandin E(2) on the renal afferent arteriole: role of EP(3) and EP(4) receptors. Circ Res. 2000;86:663–70.

    Article  CAS  PubMed  Google Scholar 

  57. Loutzenhiser R, Griffin K, Williamson G, Bidani A. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol. 2006;290:R1153–67.

    CAS  Google Scholar 

  58. Griffin KA, Bidani AK. Progression of renal disease: the renoprotective specificity of renin angiotensin system blockade. Clin J Am Soc Nephrol. 2006;1:1054–65.

    Article  PubMed  Google Scholar 

  59. Bidani AK, Polichnowski AJ, Loutzenhiser R, Griffin KA. Renal microvascular dysfunction, hypertension and CKD progression. Curr Opin Nephrol Hypertens. 2013;22:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Polichnowski AJ, Griffin KA, Picken MM, Licea-Vargas H, Long J, Williamson GA, Bidani AK. Hemodynamic basis for the limited renal injury in rats with angiotensin II-induced hypertension. Am J Physiol. 2015;308:F252–60.

    CAS  Google Scholar 

  61. Funder JW. Minireview: aldosterone and the cardiovascular system: genomic and nongenomic effects. Endocrinology. 2006;147:5564–7.

    Article  CAS  PubMed  Google Scholar 

  62. Funder JW. Reconsidering the roles of the mineralcorticoid receptor. Mol Cell Endocrinol. 2009;301:2–6.

    Article  CAS  PubMed  Google Scholar 

  63. Shibata S, Mu SY, Kawarazaki H, Muraoka K, Ishizawa K, Yoshida S, Kawarazaki W, Takeuchi M, Ayuzawa N, Miyoshi J, Takai Y, Ishikawa A, Shimiosawa T, Ando K, Nagase M, Fujita T. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralcorticoid receptor-dependent pathway. J Clin Invest. 2011;121:3233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y, Fujita T. Modification of mineralcorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.

    Article  CAS  PubMed  Google Scholar 

  65. Pessoa SB, van der Lubbe N, Verdonk K, Roks AJ, Hoom EJ, Danser AH. Key developments in renin-angiotensin-aldosterone system inhibition. Nat Rev Nephrol. 2013;9:26–36.

    Article  CAS  Google Scholar 

  66. Converse Jr RL, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–28.

    Article  PubMed  Google Scholar 

  67. Victor RG, Shafiq MM. Sympathetic neural mechanisms in human hypertension. Curr Hypertens Rep. 2008;10:241–7.

    Article  CAS  PubMed  Google Scholar 

  68. Esler M, Lambert E, Schlaich M. Chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J Appl Physiol. 2010;109:1996–8.

    Article  PubMed  Google Scholar 

  69. Schlaich MP, Lambert E, Kaye DM, Krozowski Z, Campbell DJ, Lambert G, Hastings J, Aggarwal A, Esler MD. Sympathetic augmentation in hypertension: role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension. 2004;43:169–75.

    Article  CAS  PubMed  Google Scholar 

  70. DiBona GF. Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am J Physiol. 2005;289:R633–41.

    Article  CAS  Google Scholar 

  71. Johns EJ, Kopp UC, DiBona GF. Neural control of renal function. Compr Physiol. 2011;1:731–67.

    PubMed  Google Scholar 

  72. Ye S, Ozgur B, Campese VM. Renal afferent impulses, the posterior hypothalamus, and hypertension in rats with chronic renal failure. Kidney Int. 1997;51:722–7.

    Article  CAS  PubMed  Google Scholar 

  73. Klein IH, Ligtenberg G, Oey PL, Koomans HA, Blankestijn PJ. Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension. J Am Soc Nephrol. 2001;12:2427–33.

    CAS  PubMed  Google Scholar 

  74. Neumann J, Ligtenberg G, Klein II, Koomans HA, Blankestijn PJ. Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int. 2004;65:1568–76.

    Article  PubMed  Google Scholar 

  75. Gimbrone Jr MA. Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol. 1995;75:67B–70.

    Article  CAS  PubMed  Google Scholar 

  76. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.

    Article  CAS  PubMed  Google Scholar 

  77. Modlinger PS, Wilcox CS, Aslam S. Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin Nephrol. 2004;24:354–65.

    Article  CAS  PubMed  Google Scholar 

  78. Rodriguez-Iturbe B, Vaziri ND, Herrera-Acosta J, Johnson RJ. Oxidative stress, renal infiltration of immune cells, and salt-sensitive hypertension: all for one and one for all. Am J Physiol. 2004;286:F606–16.

    CAS  Google Scholar 

  79. Baylis C. Nitric oxide deficiency in chronic kidney disease. Am J Physiol. 2008;294:F1–9.

    Article  CAS  Google Scholar 

  80. Wilcox CS. Asymmetric dimethylarginine and reactive oxygen species. Unwelcome twin visitors to the cardiovascular and kidney disease tables. Hypertension. 2012;59(Pt. 2):375–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cowley Jr AW, Mori T, Mattson D, Zou A-P. Role of renal NO production in the regulation of medullary blood flow. Am J Physiol. 2003;284:R1355–69.

    Article  CAS  Google Scholar 

  82. Cowley Jr AW, Abe M, Mori T, O’Connor PM, Ohsaki Y. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol. 2015;308:F179–97.

    CAS  Google Scholar 

  83. Clavell AL, Stingo AJ, Margulies KB, Brandt RR, Burnett Jr JC. Role of endothelin receptor subtypes in the in vivo regulation of renal function. Am J Physiol. 1995;268:F455–60.

    CAS  PubMed  Google Scholar 

  84. Rautureau Y, Schiffrin EL. Endothelin in hypertension: an update. Curr Opin Nephrol Hypertens. 2012;21:128–36.

    Article  CAS  PubMed  Google Scholar 

  85. Kohan DE. The renal medullary endothelin system in control of sodium and water excretion and systemic blood pressure. Curr Opin Nephrol Hypertens. 2006;15:34–40.

    Article  CAS  PubMed  Google Scholar 

  86. Gariepy CE, Ohuchi T, Williams SC, Richardson JA, Yanagisawa M. Salt-sensitive hypertension in endothelin-B receptor-deficient rats. J Clin Invest. 2000;105:925–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ahn D, Ge Y, Stricklett PK, Gill P, Taylor D, Hughes AK, Yanagisawa M, Miller L, Nelson RD, Kohan DE. Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. J Clin Invest. 2004;114:504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Koyama H, Tabata T, Nishzawa Y, Inoue T, Morii H, Yamaji T. Plasma endothelin levels in patients with uraemia. Lancet. 1989;1:991–2.

    Article  CAS  PubMed  Google Scholar 

  89. Goddard J, Johnston NR, Hand MF, Cumming AD, Rabelink TJ, Rankin AJ, Webb DJ. Endothelin-A receptor antagonism reduces blood pressure and increases renal blood flow in hypertensive patients with chronic renal failure: a comparison of selective and combined endothelin receptor blockade. Circulation. 2004;109:1186–93.

    Article  CAS  PubMed  Google Scholar 

  90. Lariviere R, Level M. Endothelin-1 in chronic renal failure and hypertension. Can J Physiol Pharmacol. 2003;81:607–21.

    Article  CAS  PubMed  Google Scholar 

  91. Aperia A. Dopamine action and metabolism in the kidney. Curr Opin Nephrol Hypertens. 1994;3:39–45.

    Article  CAS  PubMed  Google Scholar 

  92. O’Connell DP, Ragsdale NV, Boyd DG, Felder RA, Carey RM. Differential human renal tubular responses to dopamine type 1 receptor stimulation are determined by blood pressure status. Hypertension. 1997;29(1 Pt 1):115–22.

    Article  PubMed  Google Scholar 

  93. Bobulescu IA, Quinones H, Gisler SM, Di Sole F, Hu MC, Shi M, Zhang J, Fuster DG, Wright N, Mumby M, Moe OW. Acute regulation of renal Na+/H+ exchanger NHE3 by dopamine: role of protein phosphatase 2A. Am J Physiol. 2010;298:1205–13.

    Google Scholar 

  94. Wang X, Villar VA, Armando I, Eisner GM, Felder RA, Jose PA. Dopamine, kidney, and hypertension: studies in dopamine receptor knockout mice. Pediatr Nephrol. 2008;23:2131–46.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Xu J, Li G, Wang P, Velazquez H, Yao X, Li Y, Wu Y, Peixoto A, Crowley S, Desir GV. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. J Clin Invest. 2005;115:1275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pestana M, Sampaio-Maia B, Moreira-Rodrigues M, et al. Expression of relanase in ¾ nephrectomy rat model. NDT Plus. 2009;2(Suppl 2):ii55.

    Google Scholar 

  97. Desir GV. Role of renalase in the regulation of blood pressure and the renal dopamine system. Curr Opin Nephrol Hypertens. 2011;20:31–6.

    Article  CAS  PubMed  Google Scholar 

  98. Desir GV, Wang L, Peixoto AJ. Human renalase: a review of its biology, function, and implications for hypertension. J Am Soc Hypertension 2012;6:417–26.

    Article  CAS  Google Scholar 

  99. Slatopolsky E, Brown A, Dusso A. Pathogenesis of secondary hyperparathyroidism. Kidney Int. 1999;73:S14–9.

    Article  CAS  Google Scholar 

  100. Cunningham J, Locatelli F, Rodriguez M. Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clin J Am Soc Nephrol. 2011;6:913–21.

    Article  CAS  PubMed  Google Scholar 

  101. Gennari C, Nami R, Gonnelli S. Hypertension and primary hyperparathyroidism: the role of adrenergic and renin-angiotensin-aldosterone systems. Miner Electrolyte Metab. 1995;21:77–81.

    CAS  PubMed  Google Scholar 

  102. Melamed ML, Thadhani RI. Vitamin D therapy in chronic kidney disease and end stage renal disease. Clin J Am Soc Nephrol. 2012;7:358–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002;110:229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiang W, Kong J, Chen S, Cao LP, Qiao G, Zheng W, Liu W, Li X, Gardner DG, Li YC. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am J Physiol. 2005;288:E125–32.

    CAS  Google Scholar 

  105. Li YC. Vitamin D, in chronic kidney disease. Contrib Nephrol. 2013;1080:98–109.

    Article  CAS  Google Scholar 

  106. Rostand SG. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension. 1997;30(2 Pt 1):150–6.

    Article  CAS  PubMed  Google Scholar 

  107. Harburg E, Gleibermann L, Roeper P, Schork MA, Schull WJ. Skin color, ethnicity, and blood pressure I: Detroit blacks. Am J Public Health. 1978;68(12):1177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu D, Fernandez BO, Hamilton A, Lang NN, Gallagher JM, Newby DE, Feelisch M, Weller RB. UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. J Invest Dermatol. 2014;134(7):1839–46.

    Article  CAS  PubMed  Google Scholar 

  109. Forman JP, Giovannucci E, Holmes MD, Bischoff-Ferrari HA, Tworoger SS, Willett WC, Curhan GC. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension. Hypertension. 2007;49(5):1063–9.

    Article  CAS  PubMed  Google Scholar 

  110. Veberidge LA, Struthers AD, Khan F, Jorde R, Scragg R, Macdonald HM, Alvarez JA, Boxer RS, Dalbeni A, Gepner AD, Isbel NM, Larsen T, Nagpal J, Petchey WG, Stricker H, Strobel F, Tangpricha V, Toxqui L, Vaquero MP, Wamberg L, Zittermann A, Witham MD, D-PRESSURE Collaboration. Effect of Vitamin D supplementation on blood pressure: a systematic review and meta-analysis incorporating individual patient data. JAMA Intern Med. 2015;175:745–54.

    Article  Google Scholar 

  111. Pargger H, Kaufmann MA, Drop LJ. Renal vascular hyperresponsiveness to elevated ionized calcium in spontaneously hypertensive rat kidneys. Intensive Care Med. 1998;24:61–70.

    Article  CAS  PubMed  Google Scholar 

  112. Churchill PC. Second messengers in renin secretion. Am J Physiol. 1985;249:F175–84.

    CAS  PubMed  Google Scholar 

  113. Ortiz-Capisano MC, Ortiz PA, Harding P, Garvin JL, Beierwaltes WH. Decreased intracellular calcium stimulates renin release via calcium-inhibitable adenylyl cyclase. Hypertension. 2007;49:162–9.

    Article  CAS  PubMed  Google Scholar 

  114. Beierwaltes WH. The role of calcium in the regulation of renin secretion. Am J Physiol. 2010;298:F1–11.

    Article  CAS  Google Scholar 

  115. Kurtz A. Renin release: sites, mechanisms, and control. Annu Rev Physiol. 2011;73:377–99.

    Article  CAS  PubMed  Google Scholar 

  116. Dickinson HO, Nicolson DJ, Cook JV, Campbell F, Beyer FR, Ford GA, Mason J. Calcium supplementation for the management of primary hypertension in adults. Cochrane Database Syst Rev. 2006;2, CD004639.

    PubMed  Google Scholar 

  117. Bolland MJ, Barber PA, Doughty RN, Mason B, Horne A, Ames R, Gamble GD, Grey A, Reid IR. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. Br Med J. 2008;336:262–6.

    Article  CAS  Google Scholar 

  118. Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, Morrison H, Li W, Wang X, Di C, Mony P, Devanath A, Rosengren A, Oguz A, Zatonska K, Yusufali AH, Lopez-Jaramillo P, Avezum A, Ismail N, Lanas F, Puoane T, Diaz R, Kellshadi R, Igbal R, Yusuf R, Chifamba J, Khatib R, Teo K, Yusuf S. PURE investigators. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014;371:601–11.

    Article  PubMed  CAS  Google Scholar 

  119. Frindt G, Palmer LG. Effects of dietary K on cell-surface expression of renal ion channels and transporters. Am J Physiol. 2010;299(4):F890–7.

    CAS  Google Scholar 

  120. Rengarajan S, Lee DH, Oh YT, Delpire E, Youn JH, McDonough AA. Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. Am J Physiol. 2014;306(9):F1059–68.

    CAS  Google Scholar 

  121. Castaneda-Bueno M, Cervantes-Perez LG, Rojas-Vega L, Arroyo-Garza I, Vazquez N, Moreno F, Gamba G. Modulation of NCC activity by low and high K(+) intake: insights into the signaling pathways involved. Am J Physiol. 2014;306(12):F1507–19.

    CAS  Google Scholar 

  122. Vitzthum H, Seniuk A, Schulte LH, Muller ML, Hetz H, Ehmke H. Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice. J Physiol. 2014;592(Pt 5):1139–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Terker AS, Zhang C, McCormick JA, Lazelle RA, Zhang C, Meermeier NP, Siler DA, Park HJ, Fu Y, Cohen DM, Weinstein AM, Wang WH, Yang CL, Ellison DH. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell. 2015;21(1):39–50.

    CAS  Google Scholar 

  124. Mazzali M, Kanbay M, Segal MS, Shflu M, Jalal D, Feig FI, Johnson RJ. Uric acid and hypertension: cause or effect? Curr Rheumatol Rep. 2010;12(2):108–17.

    Article  CAS  PubMed  Google Scholar 

  125. Parsa A, Brown E, Weir MR, Flink JC, Shuldiner AR, Mitchell BD, McArdle PF. Genotype-based changes in serum uric acid affect blood pressure. Kidney Int. 2012;81(5):502–7.

    Article  CAS  PubMed  Google Scholar 

  126. Johnson RJ, Titte S, Cade JR, Rideout BA, Oliver WJ. Uric acid, evolution and primitive cultures. Semin Nephrol. 2005;25(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  127. Nakagawa T, Hu H, Zharikov S, Tuttle K, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol. 2006;290(3):F625–31.

    CAS  Google Scholar 

  128. Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, Franklin BA, Godlstein LB, Greenland P, Grundy SM, Hong Y, Miller NH, Lauer RM, Ockene IS, Sacco RL, Sallis Jr JF, Smith Jr SC, Stone NJ, Taubert KA. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation 2002;106(3):388–91.

    Google Scholar 

  129. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Isso Jr JL, Jones DW, Materson BJ, Oparil S, Wright Jr JT, Roccella EJ, National Heart, Lung and Blood Institute Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure, National High Blood Pressure Education Program Coordinating Committee. National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    Google Scholar 

  130. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999–2008. JAMA. 2010;303(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  131. Hall JE, Kuo JJ, da Silva AA, de Paula RB, Liu J, Tallam L. Obesity-associated hypertension and kidney disease. Curr Opin Nephrol Hypertens. 2003;12:195–200.

    Article  CAS  PubMed  Google Scholar 

  132. Bagby SP. Obesity-initiated metabolic syndrome and the kidney: a recipe for chronic kidney disease. J Am Soc Nephrol. 2004;15:2775–91.

    Article  PubMed  Google Scholar 

  133. Wahba IM, Mak RH. Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin J Am Soc Nephrol. 2007;2:550–62.

    Article  CAS  PubMed  Google Scholar 

  134. Griffin KA, Kramer H, Bidani AK. Adverse renal consequences of obesity. Am J Physiol. 2008;94:F685–96.

    Google Scholar 

  135. Landsberg L, Aronne LJ, Bellin LJ, Burke V, Igel LI, Lloyd-Jones D, Sowers J. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment. J Clin Hypertens. 2013;15:14–33.

    Article  CAS  Google Scholar 

  136. Wickman C, Kramer H. Obesity and kidney disease: potential mechanisms. Semin Nephrol. 2013;33:14–22.

    Article  CAS  PubMed  Google Scholar 

  137. Hall ME, do Carmo JM, da Silva AA, Juncos LA, Wang Z, Hall JE. Obesity, hypertension and chronic kidney disease. Int J Nephrol Renovasc Dis. 2014;7:75–88.

    Google Scholar 

  138. Goodfriend TL. Obesity, sleep apnea, aldosterone, and hypertension. Curr Hypertens Rep. 2008;10(3):222–6.

    Article  CAS  PubMed  Google Scholar 

  139. Sarzani R, Salvi F, Dessi-Fulgheri P, Rappelli A. Renin-angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J Hypertens. 2008;26(5):831–43.

    Article  CAS  PubMed  Google Scholar 

  140. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Narkiewicz K, Pesek CA, Kato M, Phillips BG, Davison DE, Somers VK. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension. 1998;32(6):1039–43.

    Article  CAS  PubMed  Google Scholar 

  142. Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90(2):513–67.

    Article  CAS  PubMed  Google Scholar 

  143. Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin BG. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest. 1993;103(6):1763–8.

    Article  CAS  PubMed  Google Scholar 

  144. Bao G, Metreveli N, Li R, Taylor A, Fletcher EC. Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J Appl Physiol. 1997;83(1):95–101.

    CAS  PubMed  Google Scholar 

  145. Fletcher EC, Bao G, Li R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension. 1999;34(2):309–14.

    Article  CAS  PubMed  Google Scholar 

  146. Donadio V, Liguori R, Vetrugno R, Conti M, Elam M, Wallin BG, Karlsson T, Buglardini E, Baruzzi A, Montagna P. Daytime sympathetic hyperactivity in OSAS is related to excessive daytime sleepiness. J Sleep Res. 2007;16(3):327–32.

    Article  PubMed  Google Scholar 

  147. Narkiewicz K, Kato M, Phillips BG, Pesek CA, Davison DE, Somers VK. Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea. Circulation. 1999;100(23):2332–5.

    Article  CAS  PubMed  Google Scholar 

  148. Alberti KG, Zimmet P, Shaw J, IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62.

    Article  PubMed  Google Scholar 

  149. Reaven GM. Relationships among insulin resistance, type 2 diabetes, essential hypertension, and cardiovascular disease: similarities and differences. J Clin Hypertens. 2011;13:238–43.

    Article  CAS  Google Scholar 

  150. Reaven GM. Insulin resistance and its consequences. In: LeRoith D, Taylor SI, Olefasky JM, editors. Diabetes mellitus: a fundamental and clinical text. 3rd ed. Philadelphia: Lippincott, Williams and Wilkins; 2004. p. 899–915.

    Google Scholar 

  151. Franklin SS. Hypertension in the metabolic syndrome. Vol. IV: Metabolic syndrome and related disorders. Irvine: Mary Ann Liebert, Inc.; 2005. pp. 287–98.

    Google Scholar 

  152. Epstein M, Sowers JR. Diabetes mellitus and hypertension. Hypertension. 1992;19(5):403–18.

    Article  CAS  PubMed  Google Scholar 

  153. Anderson S, Jung FF, Ingelfinger JR. Renal renin-angiotensin system in diabetes: functional, immunohistochemical, and molecular biological correlations. Am J Physiol. 1993;34:F477–86.

    Google Scholar 

  154. Ye M, Wysocki J, William J, Soler MJ, Cokie I, Batlle D. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzymes: implications for albuminuria in diabetes. J Am Soc Nephrol. 2006;17:3067–75.

    Article  CAS  PubMed  Google Scholar 

  155. Duryasula RV, Shankland SJ. Activation of a local renin-angiotensin system in podocytes by glucose. Am J Physiol. 2008;294:F830–9.

    Google Scholar 

  156. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med. 1993;329(20):1456–62.

    Article  CAS  PubMed  Google Scholar 

  157. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S. RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  158. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde R, Raz I, Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  159. Kunz R, Friedrich C, Wobers M, Mann JFE. Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin-angiotensin system on proteinuria in renal disease. Ann Intern Med. 2008;148:30–48.

    Article  PubMed  Google Scholar 

  160. Bidani AK, Griffin KA. The benefits of renin-angiotensin blockade in hypertension are dependent on blood-pressure lowering. Nat Clin Pract Nephrol. 2006;2(10):542–3.

    Article  PubMed  Google Scholar 

  161. Griffin KA, Bidani AK. Potential risks of calcium channel blockers in chronic kidney disease. Curr Cardiol Rep. 2008;10(6):448–55.

    Article  PubMed  Google Scholar 

  162. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group, The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs. diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA. 2002;288:2981–97.

    Google Scholar 

  163. ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, Anderson C. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Article  Google Scholar 

  164. Fried LF, Emanuele N, Zhang JH, Brophy M, Conner TA, Duickworth W, Leehey DJ, McCullough PA, O’Connor t, Palevsky PM, Reilly RF, Seliger SL, Warren SR, Watnick S, Peduzzi P, Guarino P, VA NEPHRON-D Investigators. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–903

    Google Scholar 

  165. Parving HH, Brenner BM, McMurray JJV, de Zeeuw D, Haffner SM, Solomon SD, Chaturvedi N, Persson F, Desai AS, Nicolaides M, Richard Z, Xiang Z, Brunel P, Pfeffer MA, ALTITUDE Investigators. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. New Engl J Med. 2012;367(23):2204–13.

    Google Scholar 

  166. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14(3):173–94.

    Article  CAS  PubMed  Google Scholar 

  167. Wang CC, Goalstone ML, Draznin B. Molecular mechanisms of insulin resistance that impact cardiovascular biology. Diabetes. 2004;53:2735–40.

    Article  CAS  PubMed  Google Scholar 

  168. Hall JE, Brands MW, Mizelle HL, Gaillard CA, Hildebrandt DA. Chronic intrarenal hyperinsulinemia does not cause hypertension. Am J Physiol. 1991;260:F663–9.

    CAS  PubMed  Google Scholar 

  169. Hall JE, Brands MW, Zappe DH, Galicia MA. Insulin resistance, hyperinsulinemia, and hypertension: cause, consequences, or merely correlation? Proc Soc Exp Biol Med. 1995;208:317–29.

    Article  CAS  PubMed  Google Scholar 

  170. Pontiroli AE, Alberetto M, Pozza G. Patients with insulinoma show insulin resistance in the absence of arterial hypertension. Diabetologia. 1992;35:294–5.

    Article  CAS  PubMed  Google Scholar 

  171. Sawicki PT, Baba T, Berger M, Starke A. Normal blood pressure in patients with insulinoma despite hyperinsulinemia and insulin resistance. J Am Soc Nephrol. 1992;3:S64–8.

    CAS  PubMed  Google Scholar 

  172. Sawicki PT, Kaiser S, Heinemann L, et al. Prevalence of renal artery stenosis in diabetes mellitus: an autopsy study. J Intern Med. 1991;229:489–92.

    Article  CAS  PubMed  Google Scholar 

  173. Onrot J, Goldberg MR, Hollister AS, et al. Management of chronic orthostatic hypotension. Am J Med. 1986;80:454–64.

    Article  CAS  PubMed  Google Scholar 

  174. Conn JW. Primary aldosteronism, a new clinical syndrome. J Lab Clin Med. 1955;45:3–17.

    CAS  PubMed  Google Scholar 

  175. Calhoun D. Aldosteronism and hypertension. Clin J Am Soc Nephrol. 2006;1:1039–45.

    Article  CAS  PubMed  Google Scholar 

  176. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, Hauner H, McCann SM, Scherbaum WA, Bornstein SR. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100:14211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Staub O, Rotin D. Role of Ubiquitylation in cellular membrane transport. Physiol Rev. 2006;86:669–707.

    Article  CAS  PubMed  Google Scholar 

  178. Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, Stubbe J, Jensen ON, Thiesson HC, Uhrenholt TR, Jespersen B, Jensen BL, Korbmacher C, Skott O. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol. 2009;20:299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Svenningsen P, Uhrenholt TR, Palarasah Y, Skodt K, Jensen BL, Skott O. Prostasin-dependent activation of epithelial Na+ channels by low plasmin concentrations. Am J Physiol. 2009;297:R1733–41.

    CAS  Google Scholar 

  180. Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59:347–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Brunner HR, Kirschman JD, Sealey JE, Larah JH. Hypertension of renal origin: evidence for two different mechanisms. Science. 1971;174:1344–6.

    Article  CAS  PubMed  Google Scholar 

  182. Miller Jr ED, Samuels AI, Haber E, Barger AC. Inhibition of angiotensin conversion in experimental renovascular hypertension. Science. 1972;177:1108–9.

    Article  CAS  PubMed  Google Scholar 

  183. Gavras H, Brunner HR, Vaughan Jr ED, Laragh JH. Angiotensin-sodium interaction in blood pressure maintenance of renal hypertensive and normotensive rats. Science. 1973;180:1369–71.

    Article  CAS  PubMed  Google Scholar 

  184. Gavras H, Brunner HR, Thurston H, Laragh JH. Reciprocation of renin dependency with sodium volume dependency in renal hypertension. Science. 1975;188:1316–7.

    Article  CAS  PubMed  Google Scholar 

  185. Brown JJ, Davies DL, Morton JJ, Robertson JI, Cuesta V, Lever AF, Padfield PL, Trust P. Mechanism of renal hypertension. Lancet. 1976;1:1219–21.

    Article  CAS  PubMed  Google Scholar 

  186. Textor SC, Smith-Powell L. Post-stenotic arterial pressures, renal haemodynamics and sodium excretion during graded pressure reduction in conscious rats with one- and two-kidney coarctation hypertension. J Hypertens. 1988;6:311–9.

    Article  CAS  PubMed  Google Scholar 

  187. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197.

    CAS  PubMed  Google Scholar 

  188. Garovic VD, Textor SC. Renovascular hypertension and ischemic nephropathy. Circulation. 2005;112:1362–74.

    Article  PubMed  Google Scholar 

  189. Textor SC, Novick A, Mujais SK, Ross R, Bravo EL, Fouad FM, Tarazi RC. Responses of the stenosed and contralateral kidneys to [Sar1, Thr8] all in human renovascular hypertension. Hypertension. 1983;5:796–804.

    Article  CAS  PubMed  Google Scholar 

  190. De Bruyne B, Manoharan G, Pijls NH, et al. Assessment of renal artery stenosis severity by pressure gradient measurements. J Am Coll Cardiol. 2006;48:1851–5.

    Article  PubMed  Google Scholar 

  191. Baumgartner I, Lerman LO. Renovascular hypertension: screening and modern management. Eur Heart J. 2011;32(13):1590–8.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Textor SC, Misra S, Oderich GS. Percutaneous revascularization for ischemic nephropathy. The past, present, and future. Kidney Int. 2013;83:28–40.

    Article  CAS  PubMed  Google Scholar 

  193. Kwon SH, Lerman LO. Atherosclerotic renal artery stenosis: current status. Adv Chronic Kidney Dis. 2015;22:224–31.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Textor SC, Lerman LO. Paradigm shifts in atherosclerotic renovascular disease: where are we now? J Am Soc Nephrol. 2015;26:2074–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. Griffin MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Griffin, K.A., Polichnowski, A.J., Bidani, A.K. (2016). Pathophysiology of Hypertension in Chronic Kidney Disease and Dialysis. In: Singh, A., Agarwal, R. (eds) Core Concepts in Hypertension in Kidney Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6436-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6436-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6434-5

  • Online ISBN: 978-1-4939-6436-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics