Skip to main content

A Simple Method to Assess Abundance of the β-Catenin Signaling Pool in Cells

  • Protocol
  • First Online:
Wnt Signaling

Abstract

β-catenin (CTNNB1) is a dual-function cell–cell adhesion/transcriptional co-activator protein and an essential transducer of canonical Wnt signals. Although a number of established techniques and reagents are available to quantify the nuclear signaling activity of β-catenin (e.g., TCF-dependent reporter assays, nuclear accumulation of β-catenin, and generation of N-terminally hypophosphorylated β-catenin), there are cell-type and context-dependent limitations of these methods. Since the posttranscriptional stabilization of β-catenin outside of the cadherin complex appears universally required for β-catenin signaling, the following method allows for simple assessment of the cadherin-free fraction of β-catenin in cells, using a GST-tagged form of ICAT (Inhibitor of β-Catenin and Tcf) as an affinity matrix. This method is more sensitive and quantitative than immunofluorescence and may be useful in studies that implicate TCF-independent signaling events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goentoro L, Kirschner MW (2009) Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling. Mol Cell 36:872–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cox RT, Kirkpatrick C, Peifer M (1996) Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. J Cell Biol 134:133–148

    Article  CAS  PubMed  Google Scholar 

  3. Cox RT, Pai LM, Kirkpatrick C, Stein J, Peifer M (1999) Roles of the C terminus of Armadillo in Wingless signaling in Drosophila. Genetics 153:319–332

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Song LN, Herrell R, Byers S, Shah S, Wilson EM, Gelmann EP (2003) Beta-catenin binds to the activation function 2 region of the androgen receptor and modulates the effects of the N-terminal domain and TIF2 on ligand-dependent transcription. Mol Cell Biol 23:1674–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Truica CI, Byers S, Gelmann EP (2000) Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Res 60(17):4709–4713

    CAS  PubMed  Google Scholar 

  6. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308:1181–1184

    Article  CAS  PubMed  Google Scholar 

  7. Hoogeboom D, Essers MA, Polderman PE, Voets E, Smits LM, Burgering BM (2008) Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity. J Biol Chem 283:9224–9230

    Article  CAS  PubMed  Google Scholar 

  8. Staal FJ, Noort Mv M, Strous GJ, Clevers HC (2002) Wnt signals are transmitted through N-terminally dephosphorylated beta-catenin. EMBO Rep 3:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H (2002) Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem 277:17901–17905

    Article  PubMed  Google Scholar 

  10. Maher MT, Flozak AS, Stocker A, Chenn A, Gottardi CJ (2009) Activity of the β-catenin phospho-destruction at cell-cell contacts is enhanced by cadherin-based adhesion. J Cell Biol 186:219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maher MT, Mo R, Flozak AS, Peled ON, Gottardi CJ (2010) Beta-catenin phosphorylated at serine 45 is spatially uncoupled from beta-catenin phosphorylated in the GSK3 domain: implications for signaling. PLoS One 5:e10184

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS (2003) Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem 278(35):33067–33077

    Article  CAS  PubMed  Google Scholar 

  13. Tago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y, Adachi S, Ohwada S, Morishita Y, Shibuya H, Akiyama T (2000) Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein. Genes Dev 14:1741–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tutter AV, Fryer CJ, Jones KA (2001) Chromatin-specific regulation of LEF-1-beta-catenin transcription activation and inhibition in vitro. Genes Dev 15:3342–3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graham TA, Clements WK, Kimelman D, Xu W (2002) The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT. Mol Cell 10:563–571

    Article  CAS  PubMed  Google Scholar 

  16. Daniels DL, Weis WI (2002) ICAT inhibits beta-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Mol Cell 10:573–584

    Article  CAS  PubMed  Google Scholar 

  17. Gottardi CJ, Gumbiner BM (2004) Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167:339–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi HJ, Huber AH, Weis WI (2006) Thermodynamics of beta-catenin-ligand interactions: the roles of the N- and C-terminal tails in modulating binding affinity. J Biol Chem 281:1027–1038

    Article  CAS  PubMed  Google Scholar 

  19. McCrea PD, Gumbiner BM (1991) Purification of a 92-kDa cytoplasmic protein tightly associated with the cell-cell adhesion molecule E-cadherin (uvomorulin). Characterization and extractability of the protein complex from the cell cytostructure. J Biol Chem 266:4514–4520

    CAS  PubMed  Google Scholar 

  20. Pronobis MI, Rusan NM, Peifer M (2015) A novel GSK3-regulated APC:Axin interaction regulates Wnt signaling by driving a catalytic cycle of efficient betacatenin destruction. Elife 4:e08022

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna P. Lam M.D. or Cara J. Gottardi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Flozak, A.S., Lam, A.P., Gottardi, C.J. (2016). A Simple Method to Assess Abundance of the β-Catenin Signaling Pool in Cells. In: Barrett, Q., Lum, L. (eds) Wnt Signaling. Methods in Molecular Biology, vol 1481. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6393-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6393-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6391-1

  • Online ISBN: 978-1-4939-6393-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics