Skip to main content

Applications of Cell Microencapsulation

  • Protocol
  • First Online:
Cell Microencapsulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1479))

Abstract

The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.

The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orive G, Hernández RM, Gascón AR et al (2004) History, challenges and perspectives of cell microencapsulation. Trends Biotechnol 22(2):87–92

    Article  CAS  Google Scholar 

  2. Lim GJ, Zare S, Dyke MV, Atala A (2010) Cell microencapsulation. In: Pedraz JL, Orive G (eds) Therapeutic applications of cell microencapsulation. Springer, New York, pp 126–136

    Chapter  Google Scholar 

  3. De Vos P, Bucko M, Gemeiner P et al (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 30:2559–2570

    Article  CAS  Google Scholar 

  4. Opara EC, Mirmalek-Sani S-H, Khanna O et al (2010) Design of a bioartificial pancreas. J Invest Med 58(7):831–837

    Article  Google Scholar 

  5. Bisceglie V (1933) Uber die antineoplastische immunitat; heterologe Einpflnzung von Tumoren in Huhner-embryonen. Ztschr Krebsforsch 40:122–140

    Article  Google Scholar 

  6. Scharp DW, Marchetti P (2014) Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution. Adv Drug Deliv 67–68:35–73

    Article  CAS  Google Scholar 

  7. Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11(100):20140817

    Article  CAS  Google Scholar 

  8. Park H, Guo X, Temenoff JS et al (2009) Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules 10:541–546

    Article  CAS  Google Scholar 

  9. Temenoff JS, Park H, Jabbari E et al (2004) In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. J Biomed Mater Res Part A 70:235–244

    Article  CAS  Google Scholar 

  10. Zhang MW, Park H, Guo X et al (2010) Adapting biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels for pigment epithelial cell encapsulation and lens regeneration. Tissue Eng Part C Methods 16(2):261–267

    Article  Google Scholar 

  11. Chang TMS (1964) Semipermeable microcapsules. Science 146(3643):524–525

    Article  CAS  Google Scholar 

  12. Lim F, Sun M (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472):908–910

    Article  CAS  Google Scholar 

  13. Kizilel S, Garfinkel M, Opara E (2005) The bioartificial pancreas: progress and challenges. Diabetes Technol Ther 7:968–985

    Article  CAS  Google Scholar 

  14. O’Sullivan ES, Vegas A, Anderson DG, Weir GC (2011) Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev 32(6):827–844

    Article  CAS  Google Scholar 

  15. Pareta R, McQuilling JP, Sivanandane S et al (2014) Long-term function of islets encapsulated in a re-designed alginate microcapsule construct in omentum pouches of immune-competent diabetic rats. Pancreas 43(4):605–613

    Article  CAS  Google Scholar 

  16. Calafiore R (1992) Transplantation of microencapsulated pancreatic human islets for therapy of diabetes mellitus. A preliminary report. ASAIO J 38:34–37

    Article  CAS  Google Scholar 

  17. Soon-Shiong P, Heintz RE, Merideth N et al (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951

    Article  CAS  Google Scholar 

  18. Calafiore R, Basta G, Luca G et al (2006) Microencapsulated pancreatic islet allograft into non-immunosuppressed patients with Type 1 diabetes. Diabetes Care 29:137–138

    Article  Google Scholar 

  19. Tuch BE, Keogh GW, Williams LJ et al (2009) Safety and viability of microencapsulated human islets transplanted into diabetic humans. Diabetes Care 32:1887–1889

    Article  CAS  Google Scholar 

  20. Basta G, Montanucci P, Luca G et al (2011) Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 34:2406–2409

    Article  CAS  Google Scholar 

  21. Lanza RP, Jackson R, Sullivan A, Ringeling J et al (1999) Xenotransplantation of cells using biodegradable microcapsules. Transplantation 67(8):1105–1111

    Article  CAS  Google Scholar 

  22. Meyer T, Höcht B, Ulrichs K (2008) Xenogeneic islet transplantation of microencapsulated porcine islets for therapy of type I diabetes: long-term normoglycemia in STZ-diabetic rats without immunosuppression. Pediatr Surg Int 24(12):1375–1378

    Article  Google Scholar 

  23. Sun Y, Ma X, Zhou D et al (1996) Normalization of diabetes in spontaneously diabetic cynomolgus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 98:1417–1422

    Article  CAS  Google Scholar 

  24. Dufrane D, Goebbels RM, Saliez A, Guiot Y, Gianello P (2006) Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept. Transplantation 81(9):1345–1353

    Article  Google Scholar 

  25. de Vos P, Marchetti P (2002) Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol Med 8:363–366

    Article  Google Scholar 

  26. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C (2007) Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation 14:157–161

    Article  Google Scholar 

  27. Valdes-Gonzalez R, Rodriguez-Ventura AL, White DJ et al (2010) Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets. Clin Exp Immunol 162(3):537–542

    Article  CAS  Google Scholar 

  28. Matsumoto S, Tan P, Baker J et al (2014) Clinical porcine islet xenotransplantation under comprehensive regulation. Transplant Proc 46(6):1992–1995

    Article  CAS  Google Scholar 

  29. Chen Y, Yu C, Lv G et al (2014) Rapid large-scale culturing of microencapsulated hepatocytes: a promising approach for cell-based hepatic support. Transplant Proc 46(5):1649–1657

    Article  CAS  Google Scholar 

  30. Jitraruch S, Dhawan A, Hughes RD et al (2014) Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLoS One 9(12), e113609

    Article  CAS  Google Scholar 

  31. Cabané P, Gac P, Amat J et al (2009) Allotransplant of microencapsulated parathyroid tissue in severe postsurgical hypoparathyroidism: a case report. Transplant Proc 41(9):3879–3883

    Article  Google Scholar 

  32. Murua A, Orive G, Hernández RM, Pedraz JL (2009) Cryopreservation based on freezing protocols for the long-term storage of microencapsulated myoblasts. Biomaterials 30(20):3495–3501

    Article  CAS  Google Scholar 

  33. Ahmad HF, Sambanis A (2013) Cryopreservation effects on recombinant myoblasts encapsulated in adhesive alginate hydrogels. Acta Biomater 9(6):6814–6822

    Article  CAS  Google Scholar 

  34. Gurruchaga H, Ciriza J, Saenz Del Burgo L et al (2015) Cryopreservation of microencapsulated murine mesenchymal stem cells genetically engineered to secrete erythropoietin. Int J Pharm 485(1-2):15–24

    Article  CAS  Google Scholar 

  35. Acarregui A, Orive G, Pedraz JL, Hernández RM (2013) Therapeutic applications of encapsulated cells. Methods Mol Biol 1051:349–364

    Article  CAS  Google Scholar 

  36. Farney AC, Sutherland DER, Opara EC (2015) Evolution of islet transplantation for the last 30 years. Pancreas 45(1):8–20

    Article  Google Scholar 

  37. Lanza RP, Kuhtreiber WM, Ecker D et al (1995) Xenotransplantatton of porcine and bovine islets without immunosuppression using uncoated alginate microspheres. Transplantation 59:1377–1384

    Article  CAS  Google Scholar 

  38. van Schilfgaarde R, de Vos P (1999) Factors influencing the properties and performance of microcapsules for immunoprotection of pancreatic islets. J Mol Med (Berl) 77:199–205

    Article  Google Scholar 

  39. Uludag H, de Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42:29–64

    Article  CAS  Google Scholar 

  40. Khanna O, Lawson JC, Moya ML, Opara EC, Brey EM (2012) Generation of alginate microspheres for biomedical applications. J Vis Exp 66, e3388

    Google Scholar 

  41. Darrabie M, Freeman BK, Kendall WF et al (2001) Durability of polylysine-alginate microcapsules. J Biomed Mater Res 54:396–399

    Article  CAS  Google Scholar 

  42. Darrabie MD, Kendall WF, Opara EC (2005) Characteristics of poly-L-ornithine-coated alginate microcapsules. Biomaterials 26/34:6846–6852

    Article  CAS  Google Scholar 

  43. Tam SK, Bilodeau S, Dusseault J et al (2011) Biocompatibility and physicochemical characteristics of alginate-polycation microcapsules. Acta Biomater 7:1683–1692

    Article  CAS  Google Scholar 

  44. Ghandi JK, Opara EC, Brey EM (2013) Alginate-based strategies for therapeutic vascularization. Ther Deliv 4(3):327–341

    Article  CAS  Google Scholar 

  45. McQuilling JP, Arenas-Herrera J, Childers C et al (2011) New alginate microcapsule system for angiogenic protein delivery and immunoisolation for transplantation in the rat omentum pouch. Transplant Proc 43:3262–3264

    Article  CAS  Google Scholar 

  46. Jourdan G, Dusseault J, Benhamou PY, Rosenberg L, Hallé JP (2011) Co-encapsulation of bioengineered IGF-II-producing cells and pancreatic islets: effect on beta-cell survival. Gene Ther 18(6):539–545

    Article  CAS  Google Scholar 

  47. Davis NE, Beenken-Rothkopf LN, Mirsoian A et al (2012) Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials 33(28):6691–6697

    Article  CAS  Google Scholar 

  48. Vériter S, Gianello P, Igarashi Y et al (2014) Improvement of subcutaneous bioartificial pancreas vascularization and function by coencapsulation of pig islets and mesenchymal stem cells in primates. Cell Transplant 23(11):1349–1364

    Article  Google Scholar 

  49. Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 102(32):11474–11479

    Article  CAS  Google Scholar 

  50. Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25(10):2648–2659

    Article  CAS  Google Scholar 

  51. Atsma DE, Fibbe WE, Rabelink TJ (2007) Opportunities and challenges for mesenchymal stem cell-mediated heart repair. Curr Opin Lipidol 18(6):645–649

    Article  CAS  Google Scholar 

  52. Firth AL, Yao W, Ogawa A et al (2010) Multipotent mesenchymal progenitor cells are present in endarterectomized tissues from patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Cell Physiol 298(5):C1217–C1225

    Article  CAS  Google Scholar 

  53. Aguayo-Mazzucato C, Bonner-Weir S (2010) Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol 6:139–148

    Article  Google Scholar 

  54. Fortino C, Ricordi C, Lauriola V, Alejandro R, Pileggi A (2010) Bone marrow-derived stem cell transplantation for the treatment of insulin-dependent diabetes. Rev Diabet Stud 7:144–157

    Article  Google Scholar 

  55. Volarevic V, Arsennievic N, Lukic ML, Stojkovic M (2011) Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 29(1):5–10

    Article  CAS  Google Scholar 

  56. Tolar J, Villeneuve P, Keating A (2011) Mesenchymal stromal cells for graft-versus-host disease. Human Gene Ther 22:1–6

    Article  CAS  Google Scholar 

  57. Figliuzzi M, Bonanrini B, Silvani S, Remuzzi A (2014) Mesenchymal stem cells help pancreatic islet transplantation to control type 1 diabetes. World J Stem Cells 6(2):163–172

    Article  Google Scholar 

  58. Volarevic V, Nurkovic J, Arsennievic N, Stojkovic M (2014) Concise review: therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells 32(11):2813–2823

    Article  CAS  Google Scholar 

  59. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  CAS  Google Scholar 

  60. Porada CD, Almeida-Porada G (2010) Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 62(12):1156–1166

    Article  CAS  Google Scholar 

  61. Porada CD, Zanjani ED, Almeida-Porad G (2006) Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther 1(3):365–369

    Article  CAS  Google Scholar 

  62. Nauta AJ, Westerhuis G, Kruisselbrink AB et al (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108(6):2114–2120

    Article  CAS  Google Scholar 

  63. Lim JH, Kim JS, Yoon IH et al (2010) Immunomodulation of delayed-type hypersensitivity responses by mesenchymal stem cells is associated with bystander T cell apoptosis in the draining lymph node. J Immunol 185(7):4022–4029

    Article  CAS  Google Scholar 

  64. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringdén O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57(1):11–20

    Article  Google Scholar 

  65. Wright EJ, Farrell KA, Malik N et al (2012) Encapsulated glucagon-like peptide-1-producing mesenchymal stem cells have a beneficial effect on failing pig hearts. Stem Cells Transl Med 1(10):759–769

    Article  CAS  Google Scholar 

  66. Khanna O, Moya ML, Opara EC, Brey EM (2010) Synthesis of multi-layered alginate microcapsules for the sustained release of fibroblast growth factor-1. J Biomed Mater Res A 95(2):632–640

    Article  CAS  Google Scholar 

  67. Sittadjody S, Saul SM, Joo S, Yoo JJ, Atala A, Opara EC (2013) Engineered multilayer ovarian tissue that secretes sex steroids and peptide hormones in response to gonadotropins. Biomaterials 34(10):2412–2420

    Article  CAS  Google Scholar 

  68. Horiguchi I, Chowdhury MM, Sakai Y, Tabata Y (2014) Proliferation, morphology, and pluripotency of mouse induced pluripotent stem cells in three different types of alginate beads for mass production. Biotechnol Prog 30(4):896–904

    Article  CAS  Google Scholar 

  69. Wilson JL, Najia MA, Saeed R, McDevitt TC (2014) Alginate encapsulation parameters influence the differentiation of microencapsulated embryonic stem cell aggregates. Biotechnol Bioeng 111(3):618–631

    Article  CAS  Google Scholar 

  70. Levee MG, Lee GM, Paek SH, Palsson BO (1994) Microencapsulated human bone marrow cultures: a potential culture system for the clonal outgrowth of hematopoietic progenitor cells. Biotechnol Bioeng 43(8):734–739

    Article  CAS  Google Scholar 

  71. Serra M, Correia C, Malpique R et al (2011) Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One 6(8), e23212

    Article  CAS  Google Scholar 

  72. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106

    Article  CAS  Google Scholar 

  73. Dubrot J, Portero A, Orive G et al (2010) Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunol Immunother 59(11):1621–1631

    Article  CAS  Google Scholar 

  74. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622

    Article  CAS  Google Scholar 

  75. Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1):83–95

    Article  CAS  Google Scholar 

  76. Oliveira-Ferrer L, Wellbrock J, Bartsch U et al (2013) Combination therapy targeting integrins reduces glioblastoma tumor growth through antiangiogenic and direct antitumor activity and leads to activation of the pro-proliferative prolactin pathway. Mol Cancer 12(1):144

    Article  CAS  Google Scholar 

  77. Banning A, Sjogren P, Henriksen H (1991) Pain causes in 200 patients referred to a multidisciplinary cancer pain clinic. Pain 45:45–48

    Article  CAS  Google Scholar 

  78. Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594

    Article  CAS  Google Scholar 

  79. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12:6243–6249

    Article  Google Scholar 

  80. Li X, Li G, Wu S et al (2014) Antinociceptive effect of intrathecal microencapsulated human pheochromocytoma cell in a rat model of bone cancer pain. Int J Mol Sci 15(7):12135–12148

    Article  CAS  Google Scholar 

  81. Kailasapathy K (2002) Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 3(2):39–48

    CAS  Google Scholar 

  82. Riaz QU, Masud T (2013) Recent trends and applications of encapsulating materials for probiotic stability. Crit Rev Food Sci Nutr 53(3):231–244

    Article  Google Scholar 

  83. Heidebach T, Forst P, Kulozik U (2012) Microencapsulation of probiotic cells for food applications. Crit Rev Food Sci Nutr 52(4):291–311

    Article  CAS  Google Scholar 

  84. Lacroix C, Yildirim S (2007) Fermentation technologies for the production of probiotics with high viability and functionality. Curr Opin Biotechnol 18(2):176–183

    Article  CAS  Google Scholar 

  85. Phoem AN, Chanthachum S, Voravuthikunchai SP (2015) Applications of microencapsulated Bifidobacterium longum with Eleutherine Americana in fresh milk tofu and pineapple juice. Nutrients 7(4):2469–2484

    Article  CAS  Google Scholar 

  86. Muthukumarasamy P, Holley RA (2006) Microbiological and sensory quality of dry fermented sausages containing alginate-microencapsulated Lactobacillus reuteri. Int J Food Microbiol 111(2):164–169

    Article  CAS  Google Scholar 

  87. Mandal S, Hati S, Puniya AK, Khamrui K, Singh K (2014) Enhancement of survival of alginate-encapsulated Lactobacillus casei NCDC 298. J Sci Food Agric 94(10):1994–2001

    Article  CAS  Google Scholar 

  88. Shah NP (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83(4):894–907

    Article  CAS  Google Scholar 

  89. Lofty SN, Fadel HH, El-Ghorab AH, Shaheen MS (2015) Stability of encapsulated beef-like flavorings prepared for enzymatically hydrolysed mushroom proteins with other precursors under conventional and microwave heating. Food Chem 187:7–13

    Article  CAS  Google Scholar 

  90. Rathore S, Wan Sia Heng P, Chan LW (2015) Microencapsulation of Clostridium acetobutylicum ATCC 824 spores in gellan gum microspheres for the production of biobutanol. J Microencapsul 12:1–10

    Google Scholar 

  91. Sirisansaneeyakul S, Luangpipat T, Vanichsriratana W et al (2007) Optimization of lactic acid production by immobilized Lactococcus lactis IO-1. J Ind Microbiol Biotechnol 34(5):381–391

    Article  CAS  Google Scholar 

  92. Abdel-Rahman RM, Hrdina R, Abdel-Mohsen AM et al (2015) Chitin and chitosan from Brazilian Atlantic coast: isolation, characterization and antibacterial activity. Int J Biol Macromol 80:107–120

    Article  CAS  Google Scholar 

  93. Chandy T, Mooradian DL, Rao GH (1999) Evaluation of modified alginate-chitosan-polyethylene glycol microcapsules for cell encapsulation. Artif Organs 23(10):894–903

    Article  CAS  Google Scholar 

  94. Chia SM, Wan AC, Quek CH et al (2002) Multi-layered microcapsules for cell encapsulation. Biomaterials 23:849–856

    Article  CAS  Google Scholar 

  95. Orive G, Hernandez RM, Gascon AR, Igartua M, Pedraz JL (2003) Development and optimisation of alginate-PMCG-alginate microcapsules for cell immobilisation. Int J Pharm 259:57–68

    Article  CAS  Google Scholar 

  96. Morch YA, Donati I, Strand BL, Skjåk-Bræk G (2006) Effect of Ca, Ba, and Sr on alginate microbeads. Biomacromolecules 7:1471–1480

    Article  CAS  Google Scholar 

  97. Darrabie MD, Kendall WF, Opara EC (2006) Effect of alginate composition and gelling cation on microbead swelling. J Microencapsul 23(1):29–37

    Article  CAS  Google Scholar 

  98. Gibbs BF, Kermasha S, Alli I, Muligan C, Anon A (2002) Constant air quality humidity and temperature control during soft capsule manufacturing. Chem Plants Process 1:22–23

    Google Scholar 

  99. Vinogradova OI (2004) Mechanical properties of polyelectrolyte multilayer microcapsules. J Physiol 16:32–36

    Google Scholar 

  100. Gupta V, Verma S, Nanda A, Nanda S (2005) Osmotically controlled drug delivery. Drug Del Technol 5:68–76

    CAS  Google Scholar 

  101. Pirvu C (2005) Chemical characterization and applications of microcapsules. Farmacia 53:61–68

    CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank Michael Hunckler for help with the illustration shown in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel C. Opara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Opara, E.C. (2017). Applications of Cell Microencapsulation. In: Opara, E. (eds) Cell Microencapsulation. Methods in Molecular Biology, vol 1479. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6364-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6364-5_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6362-1

  • Online ISBN: 978-1-4939-6364-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics