Skip to main content

Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers

  • Protocol
  • First Online:
Enhancer RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1468))

Abstract

Transcriptional enhancers are DNA regulatory elements that are bound by transcription factors and act to positively regulate the expression of nearby or distally located target genes. Enhancers have many features that have been discovered using genomic analyses. Recent studies have shown that active enhancers recruit RNA polymerase II (Pol II) and are transcribed, producing enhancer RNAs (eRNAs). GRO-seq, a method for identifying the location and orientation of all actively transcribing RNA polymerases across the genome, is a powerful approach for monitoring nascent enhancer transcription. Furthermore, the unique pattern of enhancer transcription can be used to identify enhancers in the absence of any information about the underlying transcription factors. Here, we describe the computational approaches required to identify and analyze active enhancers using GRO-seq data, including data pre-processing, alignment, and transcript calling. In addition, we describe protocols and computational pipelines for mining GRO-seq data to identify active enhancers, as well as known transcription factor binding sites that are transcribed. Furthermore, we discuss approaches for integrating GRO-seq-based enhancer data with other genomic data, including target gene expression and function. Finally, we describe molecular biology assays that can be used to confirm and explore further the function of enhancers that have been identified using genomic assays. Together, these approaches should allow the user to identify and explore the features and biological functions of new cell type-specific enhancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shlyueva D, Stampfel G, Stark A (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 15:272–286

    Article  CAS  PubMed  Google Scholar 

  2. Wamstad JA, Wang X, Demuren OO et al (2014) Distal enhancers: new insights into heart development and disease. Trends Cell Biol 24:294–302

    Article  CAS  PubMed  Google Scholar 

  3. Ong CT, Corces VG (2011) Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet 12:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pennacchio LA, Bickmore W, Dean A et al (2013) Enhancers: five essential questions. Nat Rev Genet 14:288–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626

    Article  CAS  PubMed  Google Scholar 

  6. Heinz S, Romanoski CE, Benner C et al (2015) The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol 16:144–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hah N, Murakami S, Nagari A et al (2013) Enhancer transcripts mark active estrogen receptor binding sites. Genome Res 23:1210–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo X, Chae M, Krishnakumar R et al (2014) Dynamic reorganization of the AC16 cardiomyocyte transcriptome in response to TNFalpha signaling revealed by integrated genomic analyses. BMC Genomics 15:155

    Article  PubMed  PubMed Central  Google Scholar 

  9. Savic D, Roberts BS, Carleton JB et al (2015) Promoter-distal RNA polymerase II binding discriminates active from inactive CCAAT/enhancer-binding protein beta binding sites. Genome Res 25(12):1791–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heintzman ND, Hon GC, Hawkins RD et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flores O, Deniz O, Soler-Lopez M et al (2014) Fuzziness and noise in nucleosomal architecture. Nucleic Acids Res 42:4934–4946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song L, Zhang Z, Grasfeder LL et al (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 21:1757–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carter D, Chakalova L, Osborne CS et al (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32:623–626

    Article  CAS  PubMed  Google Scholar 

  15. Dekker J, Rippe K, Dekker M et al (2002) Capturing chromosome conformation. Science 295:1306–1311

    Article  CAS  PubMed  Google Scholar 

  16. Fullwood MJ, Liu MH, Pan YF et al (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462:58–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hah N, Danko CG, Core L et al (2011) A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145:622–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Santa F, Barozzi I, Mietton F et al (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim TK, Hemberg M, Gray JM et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Q, Carroll JS, Brown M (2005) Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19:631–642

    Article  CAS  PubMed  Google Scholar 

  22. Heintzman ND, Stuart RK, Hon G et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  CAS  PubMed  Google Scholar 

  23. Ling J, Baibakov B, Pi W et al (2005) The HS2 enhancer of the beta-globin locus control region initiates synthesis of non-coding, polyadenylated RNAs independent of a cis-linked globin promoter. J Mol Biol 350:883–896

    Article  CAS  PubMed  Google Scholar 

  24. Spicuglia S, Kumar S, Yeh JH et al (2002) Promoter activation by enhancer-dependent and -independent loading of activator and coactivator complexes. Mol Cell 10:1479–1487

    Article  CAS  PubMed  Google Scholar 

  25. Vieira KF, Levings PP, Hill MA et al (2004) Recruitment of transcription complexes to the beta-globin gene locus in vivo and in vitro. J Biol Chem 279:50350–50357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yamashita R, Sathira NP, Kanai A et al (2011) Genome-wide characterization of transcriptional start sites in humans by integrative transcriptome analysis. Genome Res 21:775–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Core LJ, Martins AL, Danko CG et al (2014) Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet 46:1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lam MT, Cho H, Lesch HP et al (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang D, Garcia-Bassets I, Benner C et al (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kwak H, Fuda NJ, Core LJ et al (2013) Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339:950–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franco HL, Nagari A, Kraus WL (2015) TNFalpha signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol Cell 58:21–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chae M, Danko CG, Kraus WL (2015) groHMM: a computational tool for identifying unannotated and cell type-specific transcription units from global run-on sequencing data. BMC Bioinformatics 16:222

    Article  PubMed  PubMed Central  Google Scholar 

  33. Danko CG, Hyland SL, Core LJ et al (2015) Identification of active transcriptional regulatory elements from GRO-seq data. Nat Methods 12:433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin M (2012) Cutadapt removes adapter sequences from high-throughput sequencing reads. Bioinformatics Action 17(1):10–12, Key: citeulike:11851772 17:10-12

    Google Scholar 

  35. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  38. Andrews S. (2010) Fastqc. A quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  39. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li R, Li Y, Kristiansen K et al (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  41. Heinz S, Benner C, Spann N et al (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics. 25:1952–1958. doi: 10.1093/bioinformatics/btp340

  43. Fang B, Everett LJ, Jager J et al (2014) Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 159:1140–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun M, Gadad SS, Kim DS et al (2015) Discovery, annotation, and functional analysis of long noncoding RNAs controlling cell-cycle gene expression and proliferation in breast cancer cells. Mol Cell 59:698–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27:1017–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aerts S, Thijs G, Coessens B et al (2003) Toucan: deciphering the cis-regulatory logic of coregulated genes. Nucleic Acids Res 31:1753–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mahony S, Benos PV (2007) STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res. 35:W253–W258

    Google Scholar 

  49. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS (2007) Quantifying similarity between motifs. Genome Biol 8(2):R24

    Article  PubMed  PubMed Central  Google Scholar 

  50. Handoko L, Xu H, Li G et al (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet 43:630–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li G, Ruan X, Auerbach RK et al (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148:84–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33:W741–W748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang DW, Sherman BT, Tan Q et al (2007) The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mclean CY, Bristor D, Hiller M et al (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heldring N, Isaacs GD, Diehl AG et al (2011) Multiple sequence-specific DNA-binding proteins mediate estrogen receptor signaling through a tethering pathway. Mol Endocrinol 25:564–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meyer MB, Benkusky NA, Onal M et al (2015) Selective regulation of Mmp13 by 1,25(OH)D, PTH, and Osterix through distal enhancers. J Steroid Biochem Mol Biol

    Google Scholar 

Download references

Acknowledgments

The authors thank Minho Chae and Hector L. Franco for helpful comments and suggestions about enhancer identification using GRO-seq, as well as this manuscript. The enhancer-related work in the Kraus lab is supported by grants from the NIH/NIDDK and the Cancer Prevention and Research Institute of Texas (CPRIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Lee Kraus Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nagari, A., Murakami, S., Malladi, V.S., Kraus, W.L. (2017). Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers. In: Ørom, U. (eds) Enhancer RNAs. Methods in Molecular Biology, vol 1468. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4035-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4035-6_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4033-2

  • Online ISBN: 978-1-4939-4035-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics