Skip to main content

A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration

  • Protocol
  • First Online:
Injury Models of the Central Nervous System

Abstract

Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive non-impact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langlois JA, Rutland-Brown W, Thomas KE (2004) Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. U.S. Department of Health and Human Services, Washington, DC

    Google Scholar 

  2. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21:375–378

    Article  PubMed  Google Scholar 

  3. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22:341–353

    PubMed  Google Scholar 

  4. Thornhill S, Teasdale GM, Murray GD, McEwen J, Roy CW, Penny KI (2000) Disability in young people and adults one year after head injury: prospective cohort study. BMJ 320:1631–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Humphreys I, Wood RL, Phillips CJ, Macey S (2013) The costs of traumatic brain injury: a literature review. Clinicoecon Outcomes Res 5:281–287

    Article  PubMed  PubMed Central  Google Scholar 

  6. Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE (1999) Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil 14:602–615

    Article  CAS  PubMed  Google Scholar 

  7. Graham R, Rivara FP, Ford MA, Spicer CM (2014) Sports-related concussions in youth: improving the science, changing the culture. The National Academies Press, Washington, DC

    Google Scholar 

  8. Jordan BD (2013) The clinical spectrum of sport-related traumatic brain injury. Nature reviews. Neurology 9:222–230

    CAS  PubMed  Google Scholar 

  9. Prevention, C. f. D. C. a., and Control, N. C. f. I. P. a. (2003) Report to congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem. Centers for Disease Control and Prevention, Atlanta, GA

    Google Scholar 

  10. Prevention, C. f. D. C. a. (2011) Nonfatal traumatic brain injuries related to sports and recreation activities among persons aged ≤19 Years—United States, 2001–2009. MMWR 60:1337–1342

    Google Scholar 

  11. Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta, GA

    Google Scholar 

  12. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA (2008) Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N Engl J Med 358:453–463

    Article  CAS  PubMed  Google Scholar 

  13. Smith DH, Lowenstein DH, Gennarelli TA, McIntosh TK (1994) Persistent memory dysfunction is associated with bilateral hippocampal damage following experimental brain injury. Neurosci Lett 168:151–154

    Article  CAS  PubMed  Google Scholar 

  14. Adelson PD, Dixon CE, Kochanek PM (2000) Long-term dysfunction following diffuse traumatic brain injury in the immature rat. J Neurotrauma 17:273–282

    Article  CAS  PubMed  Google Scholar 

  15. Povlishock JT, Katz DI (2005) Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil 20:76–94

    Article  PubMed  Google Scholar 

  16. Smith DH, Chen XH, Pierce JE, Wolf JA, Trojanowski JQ, Graham DI, McIntosh TK (1997) Progressive atrophy and neuron death for one year following brain trauma in the rat. J Neurotrauma 14:715–727

    Article  CAS  PubMed  Google Scholar 

  17. Coronado VG, McGuire LC, Sarmiento K, Bell J, Lionbarger MR, Jones CD, Geller AI, Khoury N, Xu L (2012) Trends in traumatic brain injury in the U.S. and the public health response: 1995–2009. J Safety Res 43:299–307

    Article  PubMed  Google Scholar 

  18. Bigler ED (2013) Traumatic brain injury, neuroimaging, and neurodegeneration. Front Hum Neurosci 7:395

    Article  PubMed  PubMed Central  Google Scholar 

  19. Johnson VE, Stewart W, Smith DH (2010) Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer's disease? Nat Rev Neurosci 11:361–370

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith DH, Johnson VE, Stewart W (2013) Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol 9:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McIntosh TK, Smith DH, Meaney DF, Kotapka MJ, Gennarelli TA, Graham DI (1996) Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biomechanical mechanisms. Lab Invest 74:315–342

    CAS  PubMed  Google Scholar 

  22. Gennarelli TA (1997) The pathobiology of traumatic brain injury. Neuroscientist 3:73–81

    Article  Google Scholar 

  23. Gennarelli TA (1993) Mechanisms of brain injury. J Emerg Med 11(Suppl 1):5–11

    PubMed  Google Scholar 

  24. McIntosh TK, Saatman KE, Raghupathi R, Graham DI, Smith DH, Lee VM, Trojanowski JQ (1998) The Dorothy Russell memorial lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 24:251–267

    Article  CAS  PubMed  Google Scholar 

  25. McIntosh TK, Juhler M, Raghupathi R, Saatman KE, Smith DH (1999) Secondary brain injury: neurochemical and cellular mediators. In: Marion W (ed) Traumatic brain injury. Thieme Medical Publishers, New York, NY, pp 39–54

    Google Scholar 

  26. Loane DJ, Faden AI (2010) Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 31:596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith DH, Meaney DF, Shull WH (2003) Diffuse axonal injury in head trauma. J Head Trauma Rehabil 18:307–316

    Article  PubMed  Google Scholar 

  28. Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25:719–738

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stein SC, Spettell C, Young G, Ross SE (1993) Delayed and progressive brain injury in closed-head trauma: radiological demonstration. Neurosurgery 32:25–30, discussion 30-21

    Article  CAS  PubMed  Google Scholar 

  30. Smith DH, Meaney DF (2000) Axonal damage in traumatic brain injury. Neuroscientist 6:483–495

    Article  Google Scholar 

  31. Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Exp Neurol 246:35–43

    Article  CAS  PubMed  Google Scholar 

  32. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42

    Article  PubMed  PubMed Central  Google Scholar 

  33. Choi DW (1994) Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 747:162–171

    Article  CAS  PubMed  Google Scholar 

  34. Goforth PB, Ellis EF, Satin LS (1999) Enhancement of AMPA-mediated current after traumatic injury in cortical neurons. J Neurosci 19:7367–7374

    CAS  PubMed  Google Scholar 

  35. Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78:3–13

    Article  CAS  PubMed  Google Scholar 

  36. Weber JT, Rzigalinski BA, Willoughby KA, Moore SF, Ellis EF (1999) Alterations in calcium-mediated signal transduction after traumatic injury of cortical neurons. Cell Calcium 26:289–299

    Article  CAS  PubMed  Google Scholar 

  37. Mouzon B, Bachmeier C, Ferro A, Ojo J-O, Crynen G, Acker C, Davies P, Mullan M, Stewart W, Crawford F (2013) Chronic neuropathological and neurobehavioral changes in a repetitive mTBI model. Ann Neurol 75(2):241–254

    Article  Google Scholar 

  38. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini VE, Lee HS, Kubilus CA, Stern RA (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68:709–735

    Article  PubMed  PubMed Central  Google Scholar 

  39. McIntosh TK (1994) Neurochemical sequelae of traumatic brain injury: therapeutic implications. Cerebrovasc Brain Metab Rev 6:109–162

    CAS  PubMed  Google Scholar 

  40. Raghupathi R (2004) Cell death mechanisms following traumatic brain injury. Brain Pathol 14:215–222

    Article  PubMed  Google Scholar 

  41. Monti JM, Voss MW, Pence A, McAuley E, Kramer AF, Cohen NJ (2013) History of mild traumatic brain injury is associated with deficits in relational memory, reduced hippocampal volume, and less neural activity later in life. Front Aging Neurosci 5:41

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ryan LM, Warden DL (2003) Post concussion syndrome. Int Rev Psychiatry 15:310–316

    Article  PubMed  Google Scholar 

  43. Vanderploeg RD, Crowell TA, Curtiss G (2001) Verbal learning and memory deficits in traumatic brain injury: encoding, consolidation, and retrieval. J Clin Exp Neuropsychol 23:185–195

    Article  CAS  PubMed  Google Scholar 

  44. De Kruijk JR, Twijnstra A, Leffers P (2001) Diagnostic criteria and differential diagnosis of mild traumatic brain injury. Brain Inj 15:99–106

    Article  PubMed  Google Scholar 

  45. De Monte VE, Geffen GM, Massavelli BM (2006) The effects of post-traumatic amnesia on information processing following mild traumatic brain injury. Brain Inj 20:1345–1354

    Article  PubMed  Google Scholar 

  46. Leininger BE, Gramling SE, Farrell AD, Kreutzer JS, Peck EA (1990) Neuropsychological deficits in symptomatic minor head injury patients after concussion and mild concussion. J Neurol Neurosurg Psychiatry 53:293–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stein DG (2015) Embracing failure: what the phase III progesterone studies can teach about TBI clinical trials. Brain Inj 29:1259–1272

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kabadi SV, Faden AI (2014) Neuroprotective strategies for traumatic brain injury: improving clinical translation. Int J Mol Sci 15:1216–1236

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smith DH, Hicks RR, Johnson VE, Bergstrom DA, Cummings DM, Noble LJ, Hovda D, Whalen M, Ahlers ST, LaPlaca M, Tortella FC, Duhaime AC, Dixon CE (2015) Pre-clinical traumatic brain injury common data elements: toward a common language across laboratories. J Neurotrauma 32(22):1725–1735

    Article  PubMed  Google Scholar 

  50. Ommaya AK, Gennarelli TA (1974) Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain 97:633–654

    Article  CAS  PubMed  Google Scholar 

  51. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McClellan DR (1989) Diffuse axonal injury in head injury: definition, diagnosis, and grading. Histopathology 15:49–59

    Article  CAS  PubMed  Google Scholar 

  52. Povlishock JT (1992) Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 2:1–12

    CAS  PubMed  Google Scholar 

  53. Santiago LA, Oh BC, Dash PK, Holcomb JB, Wade CE (2012) A clinical comparison of penetrating and blunt traumatic brain injuries. Brain Inj 26:107–125

    Article  PubMed  Google Scholar 

  54. Demetriades D, Kuncir E, Murray J, Velmahos GC, Rhee P, Chan L (2004) Mortality prediction of head abbreviated injury score and Glasgow coma scale: analysis of 7,764 head injuries. J Am Coll Surg 199:216–222

    Article  PubMed  Google Scholar 

  55. Denny-Brown DE, Russell WR (1941) Experimental concussion: (section of neurology). Proc R Soc Med 34:691–692

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Holbourn AHS (1943) Mechanics of head injury. Lancet 2:438–441

    Article  Google Scholar 

  57. Ommaya A, Hirsch A, Flamm E, Mahone R (1966) Cerebral concussion in monkey – an experimental model. Science 153:211

    Article  CAS  PubMed  Google Scholar 

  58. Yarnell P, Ommaya AK (1969) Experimental cerebral concussion in the rhesus monkey. Bull N Y Acad Med 45:39–45

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Letcher FS, Corrao PG, Ommaya AK (1973) Head injury in the chimpanzee. 2. Spontaneous and evoked epidural potentials as indices of injury severity. J Neurosurg 39:167–177

    Article  CAS  PubMed  Google Scholar 

  60. Ommaya AK, Corrao P, Letcher FS (1973) Head injury in the chimpanzee. 1. Biodynamics of traumatic unconsciousness. J Neurosurg 39:152–166

    Article  CAS  PubMed  Google Scholar 

  61. Gennarelli TA, Thibault LE, Ommaya AK (1971) Comparison of linear and rotational acceleration in experimental cerebral concussion. Proceedings of the 15th Stapp car crash conference, New York: society of automotive engineers, pp 797–803

    Google Scholar 

  62. Gennarelli TA, Thibault LE, Ommaya AK (1972) Pathophysiologic responses to rotational and translational accelerations of the head. Proceedings of the 16th Stapp car crash conference, New York: society of automotive engineers, pp 296–308

    Google Scholar 

  63. Margulies SS, Thibault LE (1992) A proposed tolerance criterion for diffuse axonal injury in man. J Biomech 25:917–923

    Article  CAS  PubMed  Google Scholar 

  64. Meaney DF, Smith DH, Shreiber DI, Bain AC, Miller RT, Ross DT, Gennarelli TA (1995) Biomechanical analysis of experimental diffuse axonal injury. J Neurotrauma 12:689–694

    Article  CAS  PubMed  Google Scholar 

  65. Margulies SS, Thibault LE, Gennarelli TA (1990) Physical model simulations of brain injury in the primate. J Biomech 23:823–836

    Article  CAS  PubMed  Google Scholar 

  66. Margulies SS, Thibault LE (1989) An analytical model of traumatic diffuse brain injury. J Biomech Eng 111:241–249

    Article  CAS  PubMed  Google Scholar 

  67. Sullivan S, Eucker SA, Gabrieli D, Bradfield C, Coats B, Maltese MR, Lee J, Smith C, Margulies SS (2015) White matter tract-oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech Model Mechanobiol 14:877–896

    Article  PubMed  Google Scholar 

  68. Galbraith JA, Thibault LE, Matteson DR (1993) Mechanical and electrical responses of the squid giant axon to simple elongation. J Biomech Eng 115:13–22

    Article  CAS  PubMed  Google Scholar 

  69. Cullen DK, Simon CM, LaPlaca MC (2007) Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronal-astrocytic co-cultures. Brain Res 1158:103–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cullen DK, Vernekar VN, LaPlaca MC (2011) Trauma-induced plasmalemma disruptions in three-dimensional neural cultures are dependent on strain modality and rate. J Neurotrauma 28:2219–2233

    Article  PubMed  PubMed Central  Google Scholar 

  71. LaPlaca MC, Cullen DK, McLoughlin JJ, Cargill RS 2nd (2005) High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. J Biomech 38:1093–1105

    Article  PubMed  Google Scholar 

  72. Prado GR, Ross JD, DeWeerth SP, LaPlaca MC (2005) Mechanical trauma induces immediate changes in neuronal network activity. J Neural Eng 2:148–158

    Article  PubMed  Google Scholar 

  73. Geddes DM, Cargill RS 2nd, LaPlaca MC (2003) Mechanical stretch to neurons results in a strain rate and magnitude-dependent increase in plasma membrane permeability. J Neurotrauma 20:1039–1049

    Article  PubMed  Google Scholar 

  74. LaPlaca MC, Lee VM, Thibault LE (1997) An in vitro model of traumatic neuronal injury: loading rate-dependent changes in acute cytosolic calcium and lactate dehydrogenase release. J Neurotrauma 14:355–368

    Article  CAS  PubMed  Google Scholar 

  75. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12:564–574

    Article  CAS  PubMed  Google Scholar 

  76. Adams JH, Graham DI, Gennarelli TA (1981) Acceleration induced head injury in the monkey. II. Neuropathology. Acta Neuropathol Suppl 7:26–28

    Article  CAS  PubMed  Google Scholar 

  77. Kotapka MJ, Gennarelli TA, Graham DI, Adams JH, Thibault LE, Ross DT, Ford I (1991) Selective vulnerability of hippocampal neurons in acceleration-induced experimental head injury. J Neurotrauma 8:247–258

    Article  CAS  PubMed  Google Scholar 

  78. Cullen DK, LaPlaca MC (2006) Neuronal response to high rate shear deformation depends on heterogeneity of the local strain field. J Neurotrauma 23:1304–1319

    Article  PubMed  Google Scholar 

  79. Smith DH, Chen XH, Xu BN, McIntosh TK, Gennarelli TA, Meaney DF (1997) Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J Neuropathol Exp Neurol 56:822–834

    Article  CAS  PubMed  Google Scholar 

  80. Sahay KB, Mehrotra R, Sachdeva U, Banerji AK (1992) Elastomechanical characterization of brain tissues. J Biomech 25:319–326

    Article  CAS  PubMed  Google Scholar 

  81. Kleiven S (2013) Why most traumatic brain injuries are not caused by linear acceleration but skull fractures are. Front Bioeng Biotechnol 1:15

    Article  PubMed  PubMed Central  Google Scholar 

  82. Duhaime AC (2006) Large animal models of traumatic injury to the immature brain. Dev Neurosci 28:380–387

    Article  CAS  PubMed  Google Scholar 

  83. Fijalkowski RJ, Stemper BD, Pintar FA, Yoganandan N, Crowe MJ, Gennarelli TA (2007) New rat model for diffuse brain injury using coronal plane angular acceleration. J Neurotrauma 24:1387–1398

    Article  PubMed  Google Scholar 

  84. Gutierrez E, Huang Y, Haglid K, Bao F, Hansson HA, Hamberger A, Viano D (2001) A new model for diffuse brain injury by rotational acceleration: I model, gross appearance, and astrocytosis. J Neurotrauma 18:247–257

    Article  CAS  PubMed  Google Scholar 

  85. Howells DW, Porritt MJ, Rewell SS, O'Collins V, Sena ES, van der Worp HB, Traystman RJ, Macleod MR (2010) Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab 30:1412–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bailey EL, McCulloch J, Sudlow C, Wardlaw JM (2009) Potential animal models of lacunar stroke: a systematic review. Stroke 40:e451–e458

    Article  PubMed  Google Scholar 

  87. Zhang K, Sejnowski TJ (2000) A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci U S A 97:5621–5626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Adams JH, Graham DI, Murray LS, Scott G (1982) Diffuse axonal injury due to nonmissile head injury in humans: an analysis of 45 cases. Ann Neurol 12:557–563

    Article  CAS  PubMed  Google Scholar 

  89. Graham DI, Adams JH, Gennarelli TA (1988) Mechanisms of non-penetrating head injury. Prog Clin Biol Res 234:159–168

    Google Scholar 

  90. Povlishock JT, Becker DP, Cheng CLY, Vaughan GW (1983) Axonal change in minor head injury. J Neuropathol Exp Neurol 42:225–242

    Article  CAS  PubMed  Google Scholar 

  91. Povlishock JT, Becker DP (1985) Fate of reactive axonal swellings induced by head injury. Lab Invest 52:540–552

    CAS  PubMed  Google Scholar 

  92. Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH (2004) Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol 165:357–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14:128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gennarelli TA, Adams JH, Graham DI (1981) Acceleration induced head injury in the monkey. I. The model, its mechanical and physiological correlates. Acta Neuropathol Suppl 7:23–25

    Article  CAS  PubMed  Google Scholar 

  95. Ross DT, Meaney DF, Sabol MK, Smith DH, Gennarelli TA (1994) Distribution of forebrain diffuse axonal injury following inertial closed head injury in miniature swine. Exp Neurol 126:291–299

    Article  CAS  PubMed  Google Scholar 

  96. Chen XH, Meaney DF, Xu BN, Nonaka M, McIntosh TK, Wolf JA, Saatman KE, Smith DH (1999) Evolution of neurofilament subtype accumulation in axons following diffuse brain injury in the pig. J Neuropathol Exp Neurol 58:588–596

    Article  CAS  PubMed  Google Scholar 

  97. Smith DH, Chen XH, Nonaka M, Trojanowski JQ, Lee VM, Saatman KE, Leoni MJ, Xu BN, Wolf JA, Meaney DF (1999) Accumulation of amyloid beta and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J Neuropathol Exp Neurol 58:982–992

    Article  CAS  PubMed  Google Scholar 

  98. Smith DH, Nonaka M, Miller R, Leoni M, Chen XH, Alsop D, Meaney DF (2000) Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J Neurosurg 93:315–322

    Article  CAS  PubMed  Google Scholar 

  99. Kimura H, Meaney DF, McGowan JC, Grossman RI, Lenkinski RE, Ross DT, McIntosh TK, Gennarelli TA, Smith DH (1996) Magnetization transfer imaging of diffuse axonal injury following experimental brain injury in the pig: characterization by magnetization transfer ratio with histopathologic correlation. J Comput Assist Tomogr 20:540–546

    Article  CAS  PubMed  Google Scholar 

  100. Friess SH, Ichord RN, Owens K, Ralston J, Rizol R, Overall KL, Smith C, Helfaer MA, Margulies SS (2007) Neurobehavioral functional deficits following closed head injury in the neonatal pig. Exp Neurol 204:234–243

    Article  PubMed  Google Scholar 

  101. Friess SH, Bruins B, Kilbaugh TJ, Smith C, Margulies SS (2015) Differing effects when using phenylephrine and norepinephrine to augment cerebral blood flow after traumatic brain injury in the immature brain. J Neurotrauma 32:237–243

    Article  PubMed  PubMed Central  Google Scholar 

  102. Friess SH, Ralston J, Eucker SA, Helfaer MA, Smith C, Margulies SS (2011) Neurocritical care monitoring correlates with neuropathology in a swine model of pediatric traumatic brain injury. Neurosurgery 69:1139–1147, discussion 1147

    PubMed  PubMed Central  Google Scholar 

  103. Friess SH, Smith C, Kilbaugh TJ, Frangos SG, Ralston J, Helfaer MA, Margulies SS (2012) Early cerebral perfusion pressure augmentation with phenylephrine after traumatic brain injury may be neuroprotective in a pediatric swine model. Crit Care Med 40:2400–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ibrahim NG, Natesh R, Szczesny SE, Ryall K, Eucker SA, Coats B, Margulies SS (2010) In situ deformations in the immature brain during rapid rotations. J Biomech Eng 132:044501

    Article  PubMed  Google Scholar 

  105. Jaber SM, Sullivan S, Margulies SS (2015) Noninvasive metrics for identification of brain injury deficits in piglets. Dev Neuropsychol 40:34–39

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhou C, Eucker SA, Durduran T, Yu G, Ralston J, Friess SH, Ichord RN, Margulies SS, Yodh AG (2009) Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. J Biomed Opt 14:034015

    Article  PubMed  PubMed Central  Google Scholar 

  107. Raghupathi R, Margulies SS (2002) Traumatic axonal injury after closed head injury in the neonatal pig. J Neurotrauma 19:843–853

    Article  PubMed  Google Scholar 

  108. Raghupathi R, Mehr MF, Helfaer MA, Margulies SS (2004) Traumatic axonal injury is exacerbated following repetitive closed head injury in the neonatal pig. J Neurotrauma 21:307–316

    Article  PubMed  Google Scholar 

  109. Friess SH, Ichord RN, Ralston J, Ryall K, Helfaer MA, Smith C, Margulies SS (2009) Repeated traumatic brain injury affects composite cognitive function in piglets. J Neurotrauma 26:1111–1121

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhu Q, Prange M, Margulies S (2006) Predicting unconsciousness from a pediatric brain injury threshold. Dev Neurosci 28:388–395

    Article  CAS  PubMed  Google Scholar 

  111. Cecil KM, Lenkinski RE, Meaney DF, McIntosh TK, Smith DH (1998) High-field proton magnetic resonance spectroscopy of a swine model for axonal injury. J Neurochem 70:2038–2044

    Article  CAS  PubMed  Google Scholar 

  112. Stein SC, Chen XH, Sinson GP, Smith DH (2002) Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg 97:1373–1377

    Article  PubMed  Google Scholar 

  113. Zhang J, Groff RF, Chen XH, Browne KD, Huang J, Schwartz ED, Meaney DF, Johnson VE, Stein SC, Rojkjaer R, Smith DH (2008) Hemostatic and neuroprotective effects of human recombinant activated factor VII therapy after traumatic brain injury in pigs. Exp Neurol 210:645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Browne KD, Chen XH, Meaney DF, Smith DH (2011) Mild traumatic brain injury and diffuse axonal injury in swine. J Neurotrauma 28:1747–1755

    Article  PubMed  PubMed Central  Google Scholar 

  115. Naim MY, Friess S, Smith C, Ralston J, Ryall K, Helfaer MA, Margulies SS (2010) Folic acid enhances early functional recovery in a piglet model of pediatric head injury. Dev Neurosci 32:466–479

    Article  CAS  PubMed  Google Scholar 

  116. Ibrahim NG, Ralston J, Smith C, Margulies SS (2010) Physiological and pathological responses to head rotations in toddler piglets. J Neurotrauma 27:1021–1035

    Article  PubMed  PubMed Central  Google Scholar 

  117. Coats B, Binenbaum G, Peiffer RL, Forbes BJ, Margulies SS (2010) Ocular hemorrhages in neonatal porcine eyes from single, rapid rotational events. Invest Ophthalmol Vis Sci 51:4792–4797

    Article  PubMed  PubMed Central  Google Scholar 

  118. Kilbaugh TJ, Bhandare S, Lorom DH, Saraswati M, Robertson CL, Margulies SS (2011) Cyclosporin A preserves mitochondrial function after traumatic brain injury in the immature rat and piglet. J Neurotrauma 28:763–774

    Article  PubMed  PubMed Central  Google Scholar 

  119. Coats B, Eucker SA, Sullivan S, Margulies SS (2012) Finite element model predictions of intracranial hemorrhage from non-impact, rapid head rotations in the piglet. Int J Dev Neurosci 30:191–200

    Article  PubMed  PubMed Central  Google Scholar 

  120. Friess SH, Naim MY, Kilbaugh TJ, Ralston J, Margulies SS (2012) Premedication with meloxicam exacerbates intracranial haemorrhage in an immature swine model of non-impact inertial head injury. Lab Anim 46:164–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sullivan S, Friess SH, Ralston J, Smith C, Propert KJ, Rapp PE, Margulies SS (2013) Improved behavior, motor, and cognition assessments in neonatal piglets. J Neurotrauma 30:1770–1779

    Article  PubMed  PubMed Central  Google Scholar 

  122. Weeks D, Sullivan S, Kilbaugh T, Smith C, Margulies SS (2014) Influences of developmental age on the resolution of diffuse traumatic intracranial hemorrhage and axonal injury. J Neurotrauma 31:206–214

    Article  PubMed  PubMed Central  Google Scholar 

  123. Margulies SS, Kilbaugh T, Sullivan S, Smith C, Propert K, Byro M, Saliga K, Costine BA, Duhaime AC (2015) Establishing a clinically relevant large animal model platform for TBI therapy development: using cyclosporin A as a case study. Brain Pathol 25:289–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Clevenger AC, Kilbaugh T, Margulies SS (2015) Carotid artery blood flow decreases after rapid head rotation in piglets. J Neurotrauma 32:120–126

    Article  PubMed  PubMed Central  Google Scholar 

  125. Thibault LE, Gennarelli TA (1989) Biomechanics of diffuse brain injuries. Proceedings of the 10th international technical conference on experimental safety vehicles. DOT, NHTSA

    Google Scholar 

  126. Eucker SA, Smith C, Ralston J, Friess SH, Margulies SS (2011) Physiological and histopathological responses following closed rotational head injury depend on direction of head motion. Exp Neurol 227:79–88

    Article  PubMed  Google Scholar 

  127. Ommaya AK, Yarnell P, Hirsch AE, Harris EH. Scaling of experimental data on cerebral concussion in sub-human primates to concussive thresholds in man. SAE Technical Paper, Proceedings of the 11th Stapp Car Crash Conference, Warrendale, PA 1967:73–80

    Google Scholar 

  128. Duma SM, Manoogian SJ, Bussone WR, Brolinson PG, Goforth MW, Donnenwerth JJ, Greenwald RM, Chu JJ, Crisco JJ (2005) Analysis of real-time head accelerations in collegiate football players. Clin J Sport Med 15:3–8

    Article  PubMed  Google Scholar 

  129. Frechede B, McIntosh AS (2009) Numerical reconstruction of real-life concussive football impacts. Med Sci Sports Exerc 41:390–398

    Article  PubMed  Google Scholar 

  130. Greenwald RM, Gwin JT, Chu JJ, Crisco JJ (2008) Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery 62:789–798, discussion 798

    Article  PubMed  PubMed Central  Google Scholar 

  131. Newman JA, Shewchenko N, Welbourne E (2000) A proposed new biomechanical head injury assessment function – the maximum power index. Stapp Car Crash J 44:215–247

    CAS  PubMed  Google Scholar 

  132. Pellman EJ, Viano DC, Tucker AM, Casson IR, Waeckerle JF (2003) Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery 53:799–812, discussion 812-794

    PubMed  Google Scholar 

  133. Miller RT, Margulies SS, Leoni M, Nonaka M, Chen XH, Smith DH, Meaney DF (1998) Finite element modeling approaches for predicting injury in an experimental model of severe diffuse axonal injury. 42nd Stapp car crash conference proceedings

    Google Scholar 

  134. Wolf JA, Johnson BN, Johnson VE, Browne KD, Mietus CJ, Smith DH, Grady MS, Cohen A, Cullen DK (in review) Concussion induces hippocampal circuitry disruption in swine

    Google Scholar 

  135. Meng X, Browne KD, Huang SM, Cullen DK, Tofighi MR, Rosen A (2012) Dynamic study of wireless intracranial pressure monitoring of rotational head injury in a swine model. Electron Lett 48:363–364

    Article  Google Scholar 

  136. Meng X, Browne KD, Huang SM, Mietus CJ, Cullen DK, Tofighi MR, Rosen A (2012) Dynamic evaluation of a digital wireless intracranial pressure sensor for the assessment of traumatic brain injury in a swine model. IEEE Trans Microw Theory Tech 61(1):316–325

    Article  Google Scholar 

  137. Meng X, Mietus CJ, Browne KD, Tofighi MR, Rosen A, Cullen DK (2013) A telemetry-based neuromonitoring system: validation in a swine model of closed-head rotational acceleration-induced TBI. National neurotrauma society annual meeting

    Google Scholar 

  138. McGowan JC, McCormack TM, Grossman RI, Mendonca R, Chen XH, Berlin JA, Meaney DF, Xu BN, Cecil KM, McIntosh TK, Smith DH (1999) Diffuse axonal pathology detected with magnetization transfer imaging following brain injury in the pig. Magn Reson Med 41:727–733

    Article  CAS  PubMed  Google Scholar 

  139. Smith DH, Cecil KM, Meaney DF, Chen XH, McIntosh TK, Gennarelli TA, Lenkinski RE (1998) Magnetic resonance spectroscopy of diffuse brain trauma in the pig. J Neurotrauma 15:665–674

    Article  CAS  PubMed  Google Scholar 

  140. Smith DH, Chen XH, Iwata A, Graham DI (2003) Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg 98:1072–1077

    Article  CAS  PubMed  Google Scholar 

  141. Tang-Schomer MD, Johnson VE, Baas PW, Stewart W, Smith DH (2012) Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol 233:364–372

    Article  PubMed  Google Scholar 

  142. Uryu K, Chen XH, Martinez D, Browne KD, Johnson VE, Graham DI, Lee VM, Trojanowski JQ, Smith DH (2007) Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol 208:185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hutson CB, Lazo CR, Mortazavi F, Giza CC, Hovda D, Chesselet MF (2011) Traumatic brain injury in adult rats causes progressive nigrostriatal dopaminergic cell loss and enhanced vulnerability to the pesticide paraquat. J Neurotrauma 28:1783–1801

    Article  PubMed  PubMed Central  Google Scholar 

  144. Uryu K, Giasson BI, Longhi L, Martinez D, Murray I, Conte V, Nakamura M, Saatman K, Talbot K, Horiguchi T, McIntosh T, Lee VM, Trojanowski JQ (2003) Age-dependent synuclein pathology following traumatic brain injury in mice. Exp Neurol 184:214–224

    Article  CAS  PubMed  Google Scholar 

  145. Johnson VE, Stewart W, Smith DH (2012) Widespread tau and amyloid-beta pathology many years after a single traumatic brain injury in humans. Brain Pathol 22:142–149

    Article  CAS  PubMed  Google Scholar 

  146. Koch ., Tekriwal A, Ulyanova AV, Grovola MR, Cullen DK, Wolf JA (2015) Chronic neurophysiological recording of the hippocampus in awake behaving swine after diffuse brain injury. National neurotrauma society annual meeting

    Google Scholar 

  147. Wolf JA, Ulyanova AV, Browne KD, Koch P, Grovola MR, Johnson VE, Cullen DK (2014) Hippocampal network disruptions after diffuse brain injury in swine. Winter conference on brain research

    Google Scholar 

  148. Elkin BS, Morrison B 3rd (2007) Region-specific tolerance criteria for the living brain. Stapp Car Crash J 51:127–138

    PubMed  Google Scholar 

  149. Cater HL, Sundstrom LE, Morrison B 3rd (2006) Temporal development of hippocampal cell death is dependent on tissue strain but not strain rate. J Biomech 39:2810–2818

    Article  PubMed  Google Scholar 

  150. Vink R, Mullins PG, Temple MD, Bao W, Faden AI (2001) Small shifts in craniotomy position in the lateral fluid percussion injury model are associated with differential lesion development. J Neurotrauma 18:839–847

    Article  CAS  PubMed  Google Scholar 

  151. Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP (1991) Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res 561:106–119

    Article  CAS  PubMed  Google Scholar 

  152. Gennarelli TA, Pintar FA, Yoganandan N (2003) Biomechanical tolerances for diffuse brain injury and a hypothesis for genotypic variability in response to trauma. Annu Proc Assoc Adv Automot Med 47:624–628

    PubMed Central  Google Scholar 

  153. Kimpara H, Iwamoto M (2012) Mild traumatic brain injury predictors based on angular accelerations during impacts. Ann Biomed Eng 40:114–126

    Article  PubMed  Google Scholar 

  154. Ommaya AK, Grubb RL Jr, Naumann RA (1971) Coup and contre-coup injury: observations on the mechanics of visible brain injuries in the rhesus monkey. J Neurosurg 35:503–516

    Article  CAS  PubMed  Google Scholar 

  155. Hardy WN, Foster CD, Mason MJ, Yang KH, King AI, Tashman S (2001) Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray. Stapp Car Crash J 45:337–368

    CAS  PubMed  Google Scholar 

  156. Kleiven S (2007) Predictors for traumatic brain injuries evaluated through accident reconstructions. Stapp Car Crash J 51:81–114

    PubMed  Google Scholar 

  157. Aare M, Kleiven S, Halldin P (2004) Injury tolerances for oblique impact helmet testing. Int J Crashworthines 9:15–23

    Article  Google Scholar 

  158. Holbourn AHS (1945) Mechanics of brain injuries. Br Med Bull 3:147–149

    Google Scholar 

  159. LaPlaca MC, Simon CM, Prado GR, Cullen DK (2007) CNS injury biomechanics and experimental models. Prog Brain Res 161:13–26

    Article  CAS  PubMed  Google Scholar 

  160. Bayly PV, Black EE, Pedersen RC, Leister EP, Genin GM (2006) In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. J Biomech 39:1086–1095

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hardy WN, Mason MJ, Foster CD, Shah CS, Kopacz JM, Yang KH, King AI, Bishop J, Bey M, Anderst W, Tashman S (2007) A study of the response of the human cadaver head to impact. Stapp Car Crash J 51:17–80

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Department of Veterans Affairs/Rehabilitation Research & Development (Merit Review #B1097-I), the National Institutes of Health/NINDS (R01-NS-038104, R01-NS-050598 & T32-NS-043126), and University of Pennsylvania’s University Research Foundation. The authors wish to thank Dr. William Stewart of the Dept. of Neuropathology and Glasgow TBI Archive, Southern General Hospital, Glasgow, UK for consultation on immunohistochemical protocols. We also thank Victoria E. Johnson, Daniel P. Brown, Michael R. Grovola, Laura A. Struzyna, and Constance J. Mietus for technical contributions.

Conflict of interest: The authors have no conflicts of interest related to this work to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kacy Cullen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cullen, D.K. et al. (2016). A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration. In: Kobeissy, F., Dixon, C., Hayes, R., Mondello, S. (eds) Injury Models of the Central Nervous System. Methods in Molecular Biology, vol 1462. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3816-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3816-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3814-8

  • Online ISBN: 978-1-4939-3816-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics