Skip to main content

Review and Literature Mining on Proteostasis Factors and Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1449))

Abstract

Automatic analysis of increasingly growing literature repositories including data integration to other databases is a powerful tool to propose hypothesis that can be used to plan experiments to validate or disprove the hypothesis. Furthermore, it provides means to evaluate the redundancy of research line in comparison to the published literature. This is potentially beneficial for those developing research in a specific disease which are interested in exploring a particular pathway or set of genes/proteins. In the scope of the integrating book a case will be made addressing proteostasis factors in cancer. The maintenance of proteome homeostasis, known as proteostasis, is a process by which cells regulate protein translation, degradation, subcellular localization, and protein folding and consists of an integrated network of proteins. The ubiquitin-proteasome system plays a key role in essential biological processes such as cell cycle, DNA damage repair, membrane trafficking, and maintaining protein homeostasis. Cells maintain proteostasis by regulating protein translation, degradation, subcellular localization, and protein folding. Aberrant proteostasis leads to loss-of-function diseases (cystic fibrosis) and gain-of-toxic-function diseases (Alzheimer’s, Parkinson’s, and Huntington’s disease). Cancer therapy on the other hand explores inhibition of proteostasis factors to trigger endoplasmic reticulum stress with subsequent apoptosis. Alternatively therapies target deubiquitinases and thereby regulate tumor promoters or suppressors. Furthermore, mutations in specific proteostasis factors are associated with higher risk for specific cancers, e.g., BRCA mutations in breast cancer. This chapter discusses proteostasis protein factors’ association with cancer from a literature mining perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Rebholz-Schuhmann D, Oellrich A, Hoehndorf R (2012) Text-mining solutions for biomedical research: enabling integrative biology. Nat Rev Genet 13(12):829–839. doi:10.1038/nrg3337

    Article  CAS  PubMed  Google Scholar 

  2. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434. doi:10.1146/annurev.biochem.78.101807.093809

    Article  CAS  PubMed  Google Scholar 

  3. Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397. doi:10.1146/annurev.biochem.78.082307.091526

    Article  CAS  PubMed  Google Scholar 

  4. van Wijk SJ, Timmers HT (2010) The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24(4):981–993. doi:10.1096/fj.09-136259

    Article  PubMed  Google Scholar 

  5. Sun Y (2006) E3 ubiquitin ligases as cancer targets and biomarkers. Neoplasia 8(8):645–654. doi:10.1593/neo.06376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Y, Ye Y (2011) Proteostasis regulation at the endoplasmic reticulum: a new perturbation site for targeted cancer therapy. Cell Res 21(6):867–883. doi:10.1038/cr.2011.75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perez-Galan P, Mora-Jensen H, Weniger MA, Shaffer AL 3rd, Rizzatti EG, Chapman CM, Mo CC, Stennett LS, Rader C, Liu P, Raghavachari N, Stetler-Stevenson M, Yuan C, Pittaluga S, Maric I, Dunleavy KM, Wilson WH, Staudt LM, Wiestner A (2011) Bortezomib resistance in mantle cell lymphoma is associated with plasmacytic differentiation. Blood 117(2):542–552. doi:10.1182/blood-2010-02-269514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kane RC, Farrell AT, Sridhara R, Pazdur R (2006) United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 12(10):2955–2960. doi:10.1158/1078-0432.CCR-06-0170

    Article  CAS  PubMed  Google Scholar 

  9. Field-Smith A, Morgan GJ, Davies FE (2006) Bortezomib (Velcadetrade mark) in the treatment of multiple myeloma. Ther Clin Risk Manag 2(3):271–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fribley AM, Evenchik B, Zeng Q, Park BK, Guan JY, Zhang H, Hale TJ, Soengas MS, Kaufman RJ, Wang CY (2006) Proteasome inhibitor PS-341 induces apoptosis in cisplatin-resistant squamous cell carcinoma cells by induction of Noxa. J Biol Chem 281(42):31440–31447. doi:10.1074/jbc.M604356200

    Article  CAS  PubMed  Google Scholar 

  11. Carvalho AS, Ribeiro H, Voabil P, Penque D, Jensen ON, Molina H, Matthiesen R (2014) Global mass spectrometry and transcriptomics array based drug profiling provides novel insight into glucosamine induced endoplasmic reticulum stress. Mol Cell Proteomics 13(12):3294–3307. doi:10.1074/mcp.M113.034363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fribley A, Wang CY (2006) Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol Ther 5(7):745–748

    Article  CAS  PubMed  Google Scholar 

  13. Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH (2006) Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 107(12):4907–4916. doi:10.1182/blood-2005-08-3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. MacLaren AP, Chapman RS, Wyllie AH, Watson CJ (2001) p53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cells. Cell Death Differ 8(3):210–218. doi:10.1038/sj.cdd.4400801

    Article  CAS  PubMed  Google Scholar 

  15. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59(11):2615–2622

    CAS  PubMed  Google Scholar 

  16. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T, Munshi N, Dang L, Castro A, Palombella V, Adams J, Anderson KC (2002) NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 277(19):16639–16647. doi:10.1074/jbc.M200360200

    Article  CAS  PubMed  Google Scholar 

  17. Wang Q, Li L, Ye Y (2008) Inhibition of p97-dependent protein degradation by Eeyarestatin I. J Biol Chem 283(12):7445–7454. doi:10.1074/jbc.M708347200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sacco JJ, Coulson JM, Clague MJ, Urbe S (2010) Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life 62(2):140–157. doi:10.1002/iub.300

    CAS  PubMed  Google Scholar 

  19. Petrucelli N, Daly MB, Feldman GL (2010) Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med 12(5):245–259. doi:10.1097/GIM.0b013e3181d38f2f

    Article  CAS  PubMed  Google Scholar 

  20. Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378(6553):203–206. doi:10.1038/378203a0

    Article  CAS  PubMed  Google Scholar 

  21. de Rozieres S, Maya R, Oren M, Lozano G (2000) The loss of mdm2 induces p53-mediated apoptosis. Oncogene 19(13):1691–1697. doi:10.1038/sj.onc.1203468

    Article  PubMed  Google Scholar 

  22. Pletscher-Frankild S, Palleja A, Tsafou K, Binder JX, Jensen LJ (2015) DISEASES: text mining and data integration of disease-gene associations. Methods 74:83–89. doi:10.1016/j.ymeth.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  23. Venkitaraman AR (2002) Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108(2):171–182

    Article  CAS  PubMed  Google Scholar 

  24. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y, Ogata H, Ohta T (2001) The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 276(18):14537–14540. doi:10.1074/jbc.C000881200

    Article  CAS  PubMed  Google Scholar 

  25. Sato K, Sundaramoorthy E, Rajendra E, Hattori H, Jeyasekharan AD, Ayoub N, Schiess R, Aebersold R, Nishikawa H, Sedukhina AS, Wada H, Ohta T, Venkitaraman AR (2012) A DNA-damage selective role for BRCA1 E3 ligase in claspin ubiquitylation, CHK1 activation, and DNA repair. Curr Biol 22(18):1659–1666. doi:10.1016/j.cub.2012.07.034

    Article  CAS  PubMed  Google Scholar 

  26. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299. doi:10.1038/387296a0

    Article  CAS  PubMed  Google Scholar 

  27. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1):25–27

    Article  CAS  PubMed  Google Scholar 

  28. Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387(6630):299–303. doi:10.1038/387299a0

    Article  CAS  PubMed  Google Scholar 

  29. Pant V, Lozano G (2014) Dissecting the p53-Mdm2 feedback loop in vivo: uncoupling the role in p53 stability and activity. OncoTarget 5(5):1149–1156

    Article  PubMed  PubMed Central  Google Scholar 

  30. Louria-Hayon I, Grossman T, Sionov RV, Alsheich O, Pandolfi PP, Haupt Y (2003) The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. J Biol Chem 278(35):33134–33141. doi:10.1074/jbc.M301264200

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki Y, Nakabayashi Y, Takahashi R (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci U S A 98(15):8662–8667. doi:10.1073/pnas.161506698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neil JR, Tian M, Schiemann WP (2009) X-linked inhibitor of apoptosis protein and its E3 ligase activity promote transforming growth factor-{beta}-mediated nuclear factor-{kappa}B activation during breast cancer progression. J Biol Chem 284(32):21209–21217. doi:10.1074/jbc.M109.018374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmidt MH, Dikic I (2005) The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6(12):907–918. doi:10.1038/nrm1762

    Article  CAS  PubMed  Google Scholar 

  34. Kim M, Tezuka T, Tanaka K, Yamamoto T (2004) Cbl-c suppresses v-Src-induced transformation through ubiquitin-dependent protein degradation. Oncogene 23(9):1645–1655. doi:10.1038/sj.onc.1207298

    Article  CAS  PubMed  Google Scholar 

  35. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286(5438):309–312

    Article  CAS  PubMed  Google Scholar 

  36. Tanimoto K, Makino Y, Pereira T, Poellinger L (2000) Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 19(16):4298–4309. doi:10.1093/emboj/19.16.4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131(3):584–595. doi:10.1016/j.cell.2007.08.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Veena MS, Wilken R, Zheng JY, Gholkar A, Venkatesan N, Vira D, Ahmed S, Basak SK, Dalgard CL, Ravichandran S, Batra RK, Kasahara N, Elashoff D, Fishbein MC, Whitelegge JP, Torres JZ, Wang MB, Srivatsan ES (2014) p16 Protein and gigaxonin are associated with the ubiquitination of NFkappaB in cisplatin-induced senescence of cancer cells. J Biol Chem 289(50):34921–34937. doi:10.1074/jbc.M114.568543

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge networking support by the Proteostasis COST Action (BM1307). This work is supported by Fundação para a Ciência e Tecnologia project EXPL/DTP-PIC/0616/2013. R.M. is supported by FCT investigator program 2012. A.S.C. is supported by grant SFRH/BPD/85569/2012 funded by Fundação para a Ciência e Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Matthiesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Carvalho, A.S., Rodríguez, M.S., Matthiesen, R. (2016). Review and Literature Mining on Proteostasis Factors and Cancer. In: Matthiesen, R. (eds) Proteostasis. Methods in Molecular Biology, vol 1449. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3756-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3756-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3754-7

  • Online ISBN: 978-1-4939-3756-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics