Skip to main content

Bright-Field Imaging and Optical Coherence Tomography of the Mouse Posterior Eye

  • Protocol
  • First Online:
Mouse Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1438))

Abstract

Noninvasive live imaging has been used extensively for ocular phenotyping in mouse vision research. Bright-field imaging and optical coherence tomography (OCT) are two methods that are particularly useful for assessing the posterior mouse eye (fundus), including the retina, retinal pigment epithelium, and choroid, and are widely applied due to the commercial availability of sophisticated instruments and software. Here, we provide a guide to using these approaches with an emphasis on post-acquisition image processing using Fiji, a bundled version of the Java-based public domain software ImageJ. A bright-field fundus imaging protocol is described for acquisition of multi-frame videos, followed by image registration to reduce motion artifacts, averaging to reduce noise, shading correction to compensate for uneven illumination, filtering to improve image detail, and rotation to adjust orientation. An OCT imaging protocol is described for acquiring replicate volume scans, with subsequent registration and averaging to yield three-dimensional datasets that show reduced motion artifacts and enhanced detail. The Fiji algorithms used in these protocols are designed for batch processing and are freely available. The image acquisition and processing approaches described here may facilitate quantitative phenotyping of the mouse eye in drug discovery, mutagenesis screening, and the functional cataloging of mouse genes by individual laboratories and large-scale projects, such as the Knockout Mouse Phenotyping Project and International Mouse Phenotyping Consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawes NL, Smith RS, Chang B, Davisson M, Heckenlively JR, John SW (1999) Mouse fundus photography and angiography: a catalogue of normal and mutant phenotypes. Mol Vis 5:22

    CAS  PubMed  Google Scholar 

  2. DiLoreto D, Grover DA, del Cerro C, del Cerro M (1994) A new procedure for fundus photography and fluorescein angiography in small laboratory animal eyes. Curr Eye Res 13:157–161

    Article  PubMed  Google Scholar 

  3. Nakamura A, Yokoyama T, Kodera S, Zhang D, Hirose S et al (1998) Ocular fundus lesions in systemic lupus erythematosus model mice. Jpn J Ophthalmol 42:345–351

    Article  CAS  PubMed  Google Scholar 

  4. Chang B (2013) Mouse models for studies of retinal degeneration and diseases. Methods Mol Biol 935:27–39. doi:10.1007/978-1-62703-080-9_2

    Article  CAS  PubMed  Google Scholar 

  5. Seeliger MW, Beck SC, Pereyra-Munoz N, Dangel S, Tsai JY, Luhmann UF, van de Pavert SA, Wijnholds J, Samardzija M, Wenzel A, Zrenner E, Narfstrom K, Fahl E, Tanimoto N, Acar N, Tonagel F (2005) In vivo confocal imaging of the retina in animal models using scanning laser ophthalmoscopy. Vision Res 45(28):3512–3519. doi:10.1016/j.visres.2005.08.014

    Article  PubMed  Google Scholar 

  6. Paques M, Simonutti M, Roux MJ, Picaud S, Levavasseur E, Bellman C, Sahel JA (2006) High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse. Vision Res 46(8–9):1336–1345. doi:10.1016/j.visres.2005.09.037

    Google Scholar 

  7. Srinivasan VJ, Ko TH, Wojtkowski M, Carvalho M, Clermont A, Bursell SE, Song QH, Lem J, Duker JS, Schuman JS, Fujimoto JG (2006) Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 47(12):5522–5528. doi:10.1167/iovs.06-0195

    Google Scholar 

  8. Fischer MD, Huber G, Beck SC, Tanimoto N, Muehlfriedel R, Fahl E, Grimm C, Wenzel A, Reme CE, van de Pavert SA, Wijnholds J, Pacal M, Bremner R, Seeliger MW (2009) Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One 4(10):e7507. doi:10.1371/journal.pone.0007507

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alex AF, Heiduschka P, Eter N (2013) Retinal fundus imaging in mouse models of retinal diseases. Methods Mol Biol 935:41–67. doi:10.1007/978-1-62703-080-9_3

    Article  CAS  PubMed  Google Scholar 

  10. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  Google Scholar 

  11. Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82(7–8):518–529. doi:10.1002/mrd.22489

    Article  CAS  PubMed  Google Scholar 

  12. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. doi:10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  13. Low BE, Krebs MP, Joung JK, Tsai SQ, Nishina PM, Wiles MV (2014) Correction of the Crb1 rd8 allele and retinal phenotype in C57BL/6N mice via TALEN-mediated homology-directed repair. Invest Ophthalmol Vis Sci 55(1):387–395. doi:10.1167/iovs.13-13278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charette JR, Samuels IS, Yu M, Stone L, Hicks W, Shi LY, Krebs MP, Naggert JK, Nishina PM, Peachey NS (2016) A chemical mutagenesis screen identifies mouse models with ERG defects. Adv Exp Med Biol 854:177–183

    Article  PubMed  Google Scholar 

  15. Collin GB, Hubmacher D, Charette JR, Hicks WL, Stone L, Yu MZ, Naggert JK, Krebs MP, Peachey NS, Apte SS, Nishina PM (2015) Disruption of murine Adamtsl4 results in lens zonular fiber detachment and retinal pigment epithelium dedifferentiation. Hum Mol Genet 24(24):6958–6974

    CAS  PubMed  Google Scholar 

  16. Zhao LH, Spassieva S, Gable K, Gupta SD, Shi LY, Wang JP, Bielawski J, Hicks WL, Krebs MP, Naggert J, Hannun YA, Dunn TM, Nishina PM (2015) Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration. Proc Natl Acad Sci U S A 112(42):12962–12967. doi:10.1073/pnas.1516733112

    Google Scholar 

  17. Saksens NT, Krebs MP, Schoenmaker-Koller FE, Hicks W, Yu M, Shi L, Rowe L, Collin GB, Charette JR, Letteboer SJ, Neveling K, van Moorsel TW, Abu-Ltaif S, De Baere E, Walraedt S, Banfi S, Simonelli F, Cremers FP, Boon CJ, Roepman R, Leroy BP, Peachey NS, Hoyng CB, Nishina PM, den Hollander AI (2016) Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity. Nat Genet 48(2):144–151. doi:10.1038/ng.3474

    Article  CAS  PubMed  Google Scholar 

  18. Won J, Shi LY, Hicks W, Wang J, Hurd R, Naggert JK, Chang B, Nishina PM (2011) Mouse model resources for vision research. J Ophthalmol 2011:391384. doi:10.1155/2011/391384

    Article  PubMed  PubMed Central  Google Scholar 

  19. Won J, Shi LY, Hicks W, Wang J, Naggert JK, Nishina PM (2012) Translational vision research models program. Adv Exp Med Biol 723:391–397. doi:10.1007/978-1-4614-0631-0_50

    Article  CAS  PubMed  Google Scholar 

  20. Li K (2008) The image stabilizer plugin for ImageJ. http://www.cs.cmu.edu/~kangli/code/Image_Stabilizer.html

  21. Sedgewick J (2012) Scientific imaging: to sharpen or obscure? http://www.americanlaboratory.com/913-Technical-Articles/121695-Scientific-Imaging-To-Sharpen-or-Obscure/

  22. Mehalow AK, Kameya S, Smith RS, Hawes NL, Denegre JM, Young JA, Bechtold L, Haider NB, Tepass U, Heckenlively JR, Chang B, Naggert JK, Nishina PM (2003) CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 12(17):2179–2189. doi:10.1093/hmg/ddg232

    Article  CAS  PubMed  Google Scholar 

  23. Mouse Facts. http://www.informatics.jax.org/mgihome/other/mouse_facts1.shtml

  24. Ewald AJ, Werb Z, Egeblad M (2011) Monitoring of vital signs for long-term survival of mice under anesthesia. Cold Spring Harb Protoc 2011(2):pdb prot5563. doi:10.1101/pdb.prot5563

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Krebs Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Krebs, M.P., Xiao, M., Sheppard, K., Hicks, W., Nishina, P.M. (2016). Bright-Field Imaging and Optical Coherence Tomography of the Mouse Posterior Eye. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 1438. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3661-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3661-8_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3659-5

  • Online ISBN: 978-1-4939-3661-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics