Skip to main content

Heat Bath Algorithmic Cooling with Spins: Review and Prospects

  • Chapter
  • First Online:
Electron Spin Resonance (ESR) Based Quantum Computing

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 31))

Abstract

Application of multiple rounds of Quantum Error Correction (QEC) is an essential milestone towards the construction of scalable quantum information processing devices. The requirements for multiple rounds QEC are high control fidelity and the ability to extract entropy from ancilla qubits. Nuclear Magnetic Resonance (NMR) based quantum devices have demonstrated high control fidelity with up to 12 qubits. On the other hand, the major challenge in the NMR QEC experiment is to efficiently supply ancilla qubits in highly pure states at the beginning of each round of QEC. Purification of spin qubits can be accomplished through Heat Bath Algorithmic Cooling (HBAC). It is an efficient method for extracting entropy from qubits that interact with a heat bath, allowing cooling below the bath temperature. For practical HBAC, hyperfine coupled electron-nuclear spin systems are more promising than conventional NMR quantum processors, since electron spin polarization is about 103 times greater than that of a proton under the same experimental conditions. We provide an overview on both theoretical and experimental aspects of HBAC focusing on spin and magnetic resonance based systems, and discuss the prospects of exploiting electron-nuclear hyperfine coupled systems for the realization of HBAC and multiple-round QEC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Negrevergne, T.S. Mahesh, C.A. Ryan, M. Ditty, F. Cyt-Racine, W. Power, N. Boulant, T. Havel, D.G. Cory, R. Laflamme, Phys. Rev. Lett. 96, 170501 (2006)

    Google Scholar 

  2. B. Criger, D. Park, J. Baugh, in Quantum Information and Computation for Chemistry, ed. by S.A. Rice, A.R. Dinner (Wiley, New York, 2014), pp. 193–228

    Google Scholar 

  3. B. Criger, G. Passante, D. Park, R. Laflamme, Philos. Trans. A. Math. Phys. Eng. Sci. 370, 4620 (2012)

    Article  Google Scholar 

  4. B. Criger, O. Moussa, R. Laflamme, Phys. Rev. A 85, 044302 (2012)

    Google Scholar 

  5. N.A. Gershenfeld, Science 275, 350 (1997)

    Article  MathSciNet  Google Scholar 

  6. D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad. Sci. U. S. A. 94, 1634 (1997)

    Article  Google Scholar 

  7. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010)

    Article  Google Scholar 

  8. O.W. Sørensen, J. Magn. Reson. 440, 435 (1990)

    Google Scholar 

  9. O.W. Sørensen, J. Magn. Reson. 93, 648 (1991)

    Google Scholar 

  10. L.J. Schulman, U.V. Vazirani, in Proceedings of Thirty-First Annual ACM Symposium on Theory of Computing—STOC ’99 (ACM, New York, 1999), pp. 322–329

    Google Scholar 

  11. P.O. Boykin, T. Mor, V. Roychowdhury, F. Vatan, R. Vrijen, Proc. Natl. Acad. Sci. U. S. A. 99, 3388 (2002)

    Article  Google Scholar 

  12. J.M. Fernandez, S. Lloyd, T. Mor, V. Roychowdhury, Int. J. Quantum Inf. 2, 461 (2004)

    Article  Google Scholar 

  13. L.J. Schulman, T. Mor, Y. Weinstein, Phys. Rev. Lett. 94, 120501 (2005)

    Article  Google Scholar 

  14. Y. Elias, G.M. Fernandez, T. Mor, Y. Weinstein, Isr. J. Chem. 46, 371 (2006)

    Article  Google Scholar 

  15. L.J. Schulman, T. Mor, Y. Weinstein, SIAM J. Comput. 36, 1729 (2007)

    Article  MathSciNet  Google Scholar 

  16. Y. Elias, T. Mor, Y. Weinstein, Phys. Rev. A 83, 042340 (2011)

    Google Scholar 

  17. O. Moussa, On Heat-Bath Algorithmic Cooling and Its Implementation in Solid-State NMR, Master thesis, University of Waterloo, 2005

    Google Scholar 

  18. N.A. Rodríguez-Briones, R. Laflamme, Achievable polarization for heat-bath algorithmic cooling. Phys. Rev. Lett. 116, 170501 (2016)

    Article  Google Scholar 

  19. S. Raeisi, M. Michele, Asymptotic bound for heat-bath algorithmic cooling. Phys. Rev. Lett. 114, 100404 (2015)

    Article  Google Scholar 

  20. Y. Elias, H. Gilboa, T. Mor, Y. Weinstein, Chem. Phys. Lett. 517, 126 (2011)

    Article  Google Scholar 

  21. G. Brassard, Y. Elias, J.M. Fernandez, H. Gilboa, J.A. Jones, T. Mor, Y. Weinstein, L. Xiao, Experimental heat-bath cooling of spins. EPJ Plus 129(12), 266 (2014)

    Google Scholar 

  22. D.E. Chang, L.M.K. Vandersypen, M. Steffen, Chem. Phys. Lett. 338, 337–344 (2001)

    Google Scholar 

  23. Y. Atia, Y. Elias, T. Mor, Y. Weinstein, Algorithmic cooling in liquid-state nuclear magnetic resonance. Phys. Rev. A 93, 012325 (2016)

    Article  MathSciNet  Google Scholar 

  24. D.G. Cory, R. Laflamme, E. Knill, L. Viola, T.F. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemariam, Y.S. Weinstein, W.H. Zurek, Fortschritte Der Phys. 48, 875 (2000)

    Article  Google Scholar 

  25. J. Baugh, O. Moussa, C.A. Ryan, A. Nayak, R. Laflamme, Nature 438, 470 (2005)

    Article  Google Scholar 

  26. D.G. Cory, J.B. Miller, A.N. Garroway, J. Magn. Reson. 90, 205 (1990)

    Google Scholar 

  27. E.M. Fortunato, M.A. Pravia, N. Boulant, G. Teklemariam, T.F. Havel, D.G. Cory, J. Chem. Phys. 116, 7599 (2002)

    Article  Google Scholar 

  28. C.A. Ryan, O. Moussa, J. Baugh, R. Laflamme, Phys. Rev. Lett. 100 (2008)

    Google Scholar 

  29. L. Müller, A. Kumar, T. Baumann, R.R. Ernst, Phys. Rev. Lett. 32, 1402 (1974)

    Article  Google Scholar 

  30. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, J. Magn. Reson. 172, 296 (2005)

    Article  Google Scholar 

  31. D.K. Park, G. Feng, R. Rahimi, S. Labruyere, T. Shibata, S. Nakazawa, K. Sato, T. Takui, R. Laflamme, J. Baugh, Quant. Inform. Process. 14(7), 2435–2461 (2015)

    Google Scholar 

  32. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001), p. 608

    Google Scholar 

  33. N. Khaneja, Phys. Rev. A 76, 32326 (2007)

    Article  Google Scholar 

  34. J. Hodges, J. Yang, C. Ramanathan, D. Cory, Phys. Rev. A 78, 010303 (2008)

    Article  Google Scholar 

  35. Y. Zhang, C.A. Ryan, R. Laflamme, J. Baugh, Phys. Rev. Lett. 107, 170503 (2011)

    Article  Google Scholar 

  36. G. Turinici, H. Rabitz, Chem. Phys. 267, 1 (2001)

    Article  Google Scholar 

  37. C. Altafini, J. Math. Phys. 43, 2051 (2002)

    Article  MathSciNet  Google Scholar 

  38. G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    Article  MathSciNet  Google Scholar 

  39. T.F. Havel, J. Math. Phys. 44, 534 (2003)

    Article  MathSciNet  Google Scholar 

  40. R.R. Darabad, Studies on Entanglement in Nuclear and Electron Spin Systems for Quantum Computing, Doctoral thesis, Osaka University, 2006

    Google Scholar 

  41. Y. Deguchi, Bull. Chem. Soc. Jpn. 35, 260 (1961)

    Article  Google Scholar 

  42. Y. Deguchi, Bull. Chem. Soc. Jpn. 34, 910 (1960)

    Article  Google Scholar 

  43. A. Abragam, M. Goldman, Rep. Prog. Phys. 41, 395 (1978)

    Article  Google Scholar 

  44. A. Abragam, Principles of Nuclear Magnetism (Clarendon, Oxford, 1961)

    Google Scholar 

  45. J. Harrison, M.J. Sellars, N.B. Manson, Diam. Relat. Mater. 15, 586 (2006)

    Article  Google Scholar 

  46. K. Tateishi, M. Negoro, A. Kagawa, M. Kitagawa, Angew. Chem. Int. Ed. Engl. 52, 13307 (2013)

    Article  Google Scholar 

  47. K. Tateishi, M. Negoro, S. Nishida, A. Kagawa, Y. Morita, M. Kitagawa, Proc. Natl. Acad. Sci. U. S. A. 111, 7527 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by CIFAR, Industry Canada, and NSERC. We thank Dr. Tal Mor and Dr. Yossi Weinstein for helpful discussions, and Dr. Rolf Horn for proofreading the manuscript. NRB acknowledges CONACYT-COZCyT and SEP for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel K. Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Park, D.K., Rodriguez-Briones, N.A., Feng, G., Rahimi, R., Baugh, J., Laflamme, R. (2016). Heat Bath Algorithmic Cooling with Spins: Review and Prospects. In: Takui, T., Berliner, L., Hanson, G. (eds) Electron Spin Resonance (ESR) Based Quantum Computing. Biological Magnetic Resonance, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3658-8_8

Download citation

Publish with us

Policies and ethics