Skip to main content

A Walkthrough of Nonlinear Capacitance Measurement of Outer Hair Cells

  • Protocol
  • First Online:
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1427))

Abstract

Nonlinear capacitance (NLC) measures are often used as surrogate measures of outer hair cell (OHC) electromotility (eM), since the two are commonly thought to share many biophysical features. The measurement of NLC is simpler than direct measurements of eM and, therefore, many investigators have adopted it. A standard patch-clamp hardware configuration is sufficient for recording NLC, given the proper software interface. Thus, the approach is cost effective. We use the software jClamp since it is tailored to capacitance measurement. Here we detail steps that we use to measure NLC. The walk through includes isolation of guinea pig OHCs, building voltage commands, recording, and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:49–155

    Article  Google Scholar 

  2. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196

    Article  CAS  PubMed  Google Scholar 

  3. Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35:143–150

    Article  CAS  PubMed  Google Scholar 

  5. Iwasa KH, Kachar B (1989) Fast in vitro movement of outer hair cells in an external electric field: effect of digitonin, a membrane permeabilizing agent. Hear Res 40:247–254

    Article  CAS  PubMed  Google Scholar 

  6. Ashmore J, Avan P, Brownell WE et al (2010) The remarkable cochlear amplifier. Hear Res 266:1–17

    Article  CAS  PubMed  Google Scholar 

  7. Dallos P, Evans BN, Hallworth R (1991) Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature 350:155–157

    Article  CAS  PubMed  Google Scholar 

  8. He DZ, Evans BN, Dallos P (1994) First appearance and development of electromotility in neonatal gerbil outer hair cells. Hear Res 78:77–90

    Article  CAS  PubMed  Google Scholar 

  9. Huang G, Santos-Sacchi J (1993) Mapping the distribution of the outer hair cell motility voltage sensor by electrical amputation. Biophys J 65:2228–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song L, Santos-Sacchi J (2013) Disparities in voltage-sensor charge and electromotility imply slow chloride-driven state transitions in the solute carrier SLC26a5. Proc Natl Acad Sci U S A 110:3883–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Santos-Sacchi J, Song L (2014) Chloride-driven electromechanical phase lags at acoustic frequencies are generated by SLC26a5, the outer hair cell motor protein. Biophys J 107:126–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv 391:85–100

    Article  CAS  PubMed  Google Scholar 

  13. Bai JP, Navaratnam D, Samaranayake H, Santos-Sacchi J (2006) En block C-terminal charge cluster reversals in prestin (SLC26A5): effects on voltage-dependent electromechanical activity. Neurosci Letts 404:270–275

    Article  CAS  Google Scholar 

  14. Bai JP, Surguchev A, Bian S et al (2010) Combinatorial cysteine mutagenesis reveals a critical intramonomer role for cysteines in prestin voltage sensing. Biophys J 99:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bian S, Koo BW, Kelleher S, Santos-Sacchi J, Navaratnam DS (2010) A highly expressing Tet-inducible cell line recapitulates in situ developmental changes in prestin’s Boltzmann characteristics and reveals early maturational events. Am J Physiol Cell Physiol 299:C828–C835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bai JP, Surguchev A, Ogando Y, Song L, Bian S, Santos-Sacchi J, Navaratnam D (2010) Prestin surface expression and activity are augmented by interaction with MAP1S, a microtubule-associated protein. J Biol Chem 285:20834–20843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Joshi C, Fernandez JM (1988) Capacitance measurements. An analysis of the phase detector technique used to study exocytosis and endocytosis. Biophys J 53:885–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lindau M, Neher E (1988) Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Archiv 411:137–146

    Article  CAS  PubMed  Google Scholar 

  19. Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79:6712–6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Debus K, Hartmann J, Kilic G, Lindau M (1995) Influence of conductance changes on patch clamp capacitance measurements using a lock-in amplifier and limitations of the phase tracking technique. Biophys J 69:2808–2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Santos-Sacchi J (2004) Determination of cell capacitance using the exact empirical solution of partial differential Y/partial differential Cm and its phase angle. Biophys J 87:714–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santos-Sacchi J, Kakehata S, Takahashi S (1998) Effects of membrane potential on the voltage dependence of motility-related charge in outer hair cells of the guinea-pig. J Physiol 510:225–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Santos-Sacchi J, Shen W, Zheng J, Dallos P (2001) Effects of membrane potential and tension on prestin, the outer hair cell lateral membrane motor protein. J Physiol 531:661–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Santos-Sacchi J, Rybalchenko V, Bai JP, Song L, Navaratnam D (2006) On the temperature and tension dependence of the outer hair cell lateral membrane conductance GmetL and its relation to prestin. Pflugers Archiv 452:283–289

    Article  CAS  PubMed  Google Scholar 

  25. Santos-Sacchi J, Navarrete E, Song L (2009) Fast electromechanical amplification in the lateral membrane of the outer hair cell. Biophysl J 96:739–747

    Article  CAS  Google Scholar 

  26. Song L, Santos-Sacchi J (2010) Conformational state-dependent anion binding in prestin: evidence for allosteric modulation. Biophys J 98:371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kakehata S, Santos-Sacchi J (1995) Membrane tension directly shifts voltage dependence of outer hair cell motility and associated gating charge. Biophys J 68:2190–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oliver D, Fakler B (1999) Expression density and functional characteristics of the outer hair cell motor protein are regulated during postnatal development in rat. J Physiol 519:791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong XX, Iwasa KH (2004) Tension sensitivity of prestin: comparison with the membrane motor in outer hair cells. Biophys J 86:1201–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Iwasa KH (1993) Effect of stress on the membrane capacitance of the auditory outer hair cell. Biophys J 65:492–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muallem D, Ashmore J (2006) An anion antiporter model of prestin, the outer hair cell motor protein. Biophys J 90:4035–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Oliver D, He DZ, Klöcker N et al (2001) Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein. Science 292:2340–2343

    Article  CAS  PubMed  Google Scholar 

  33. Rybalchenko V, Santos-Sacchi J (2003) Cl- flux through a non-selective, stretch-sensitive conductance influences the outer hair cell motor of the guinea-pig. J Physiol 547:873–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rybalchenko V, Santos-Sacchi J (2008) Anion control of voltage sensing by the motor protein prestin in outer hair cells. Biophys J 95:4439–4447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Song L, Seeger A, Santos-Sacchi J (2005) On membrane motor activity and chloride flux in the outer hair cell: lessons learned from the environmental toxin tributyltin. Biophys J 88:2350–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Santos-Sacchi J, Song L, Zheng J, Nuttall AL (2006) Control of mammalian cochlear amplification by chloride anions. J Neurosci 26:3992–3998

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Santos-Sacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Song, L., Santos-Sacchi, J. (2016). A Walkthrough of Nonlinear Capacitance Measurement of Outer Hair Cells. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology, vol 1427. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3615-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3615-1_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3613-7

  • Online ISBN: 978-1-4939-3615-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics