Skip to main content

Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Inner-Ear Proteins

  • Protocol
  • First Online:
Auditory and Vestibular Research

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1427))

Abstract

Surface plasmon resonance is an optical technique that is utilized for detecting molecular interactions. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected after polarized light impinges upon the film, is altered, and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. We have utilized surface plasmon resonance to study interaction of proteins of inner-ear sensory epithelia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panagiotis L, Kastritis PL, Bonvin AM (2012) On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface 10:1–27

    Google Scholar 

  2. Schuck P (1997) Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu Rev Biophys Struct 26:541–566

    Article  CAS  Google Scholar 

  3. Ramakrishnan NA, Drescher MJ, Sheikhali SA, Khan KM, Hatfield JS, Dickson MJ, Drescher DG (2006) Molecular identification of an N-type Ca2+ channel in saccular hair cells. Neuroscience 139:1417–1434

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15:10481–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kowalczyk C, Dunkel N, Willen L, Casal ML, Mauldin EA, Gaide O, Tardivel A, Badic G, Etter AL, Favre M, Jefferson DM, Headon DJ, Demotz S, Schneider P (2011) Molecular and therapeutic characterization of anti-ectodysplasin A receptor (EDAR) agonist monoclonal antibodies. J Biol Chem 286:30769–30779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF, Kahsai AW, Wingler LM, Zhu X, Tripathi-Shukla P, Huang XP, Riley J, Besnard J, Read KD, Roth BL, Gilbert IH, Hopkins AL, Lefkowitz RJ, Navratilova I (2013) Discovery of β2 adrenergic receptor ligands using biosensor fragment screening of tagged wild-type receptor. ACS Med Chem Lett 4:1005–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mariani S, Minunni M (2014) Surface plasmon resonance applications in clinical analysis. Anal Bioanal Chem 406:2303–2323

    Article  CAS  PubMed  Google Scholar 

  8. Episentec Application Note # 020 Label-Enhanced SPR (2015) Label-enhanced SPR: a primer on technology & applications. EAN 020–02-15-03-01

    Google Scholar 

  9. Leveque C, Ferracci G, Seagar M, Miquelis R (2003) Biacore’s SPR technology applied to the study of the molecular machinery of exocytosis. Biacore J 1:8–11

    Google Scholar 

  10. Ramakrishnan NA, Drescher MJ, Morley BJ, Kelley PM, Drescher DG (2014) Calcium regulates molecular interactions of otoferlin with soluble NSF attachment protein receptor (SNARE) proteins required for hair cell exocytosis. J Biol Chem 289:8750–8766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramakrishnan NA, Drescher MJ, Drescher DG (2009) Direct interaction of otoferlin with syntaxin 1A, SNAP-25, and the L-type voltage-gated calcium channel Cav1.3. J Biol Chem 284:1364–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Selvakumar D, Drescher MJ, Drescher DG (2013) Cyclic nucleotide-gated channel α-3 (CNGA3) interacts with stereocilia tip-link cadherin 23 + exon 68 or alternatively with myosin VIIa, two proteins required for hair cell mechanotransduction. J Biol Chem 288:7215–7229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Selvakumar D, Drescher MJ, Dowdall J, Khan KM, Hatfield JS, Ramakrishnan NA, Drescher DG (2012) CNGA3 is expressed in inner ear hair cells and binds to an intracellular C-terminus domain of EMILIN1. Biochem J 443:463–476

    Article  CAS  PubMed  Google Scholar 

  14. Ramakrishnan NA, Drescher MJ, Khan KM, Hatfield JS, Drescher DG (2012) HCN1 and HCN2 are expressed in cochlear hair cells. HCN1 can form a ternary complex with protocadherin 15 CD3 and F-actin-binding filamin A or can interact with HCN2. J Biol Chem 287:37628–37646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bahloul A, Michel V, Hardelin JP, Nouaille S, Hoos S, Houdusse A, England P, Petit C (2010) Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 19:3557–3565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramakrishnan NA, Drescher MJ, Barretto RL, Beisel KW, Hatfield JS, Drescher DG (2009) Calcium-dependent binding of HCN1 channel protein to hair cell stereociliary tip-link protein protocadherin 15 CD3. J Biol Chem 284:3227–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tauris J, Christensen EI, Nykjaer A, Jacobsen C, Petersen CM, Ovesen T (2009) Cubilin and megalin co-localize in the neonatal inner ear. Audiol Neurootol 14:267–278

    Article  CAS  PubMed  Google Scholar 

  18. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch Teil A 23:2135–2136

    CAS  Google Scholar 

  19. Karlsson R, Roos H, Fägerstam L, Persson B (1994) Kinetic and concentration analysis using BIA technology. Methods Companion Methods Enzymol 6:99–110

    Article  CAS  Google Scholar 

  20. Stenberg E, Persson B, Roos H, Urbaniczky C (1991) Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J Colloid Interface Sci 143:513–526

    Article  CAS  Google Scholar 

  21. Gopinath SCB (2010) Biosensing applications of surface plasmon resonance-based Biacore technology. Sensor Actuator B 150:722–733

    Article  CAS  Google Scholar 

  22. Johnsson B, Lofas S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198:268–277

    Article  CAS  PubMed  Google Scholar 

  23. BIACORE (1998) BIAevaluation version 3 software handbook. Chapter 4: evaluating kinetic data, 4.1–4.31. Chapter 5: evaluating concentration data, 5.1–5.10

    Google Scholar 

  24. Steffner P, Markey F (1997) When the chips are down. BIA J 1:11–15

    Google Scholar 

  25. Myszka DG, He X, Dembo M, Morton TA, Goldstein B (1998) Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophys J 75:583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schuck P, Zhao H (2010) The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol Biol 627:15–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 DC000156 and NIH R01 DC004076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis G. Drescher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Drescher, D.G., Dakshnamurthy, S., Drescher, M.J., Ramakrishnan, N.A. (2016). Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Inner-Ear Proteins. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology, vol 1427. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3615-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3615-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3613-7

  • Online ISBN: 978-1-4939-3615-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics