Skip to main content

Analysis of Alternative Pre-RNA Splicing in the Mouse Retina Using a Fluorescent Reporter

  • Protocol
  • First Online:
RNA-Protein Complexes and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1421))

  • 4163 Accesses

Abstract

In vivo alternative splicing is controlled in a tissue and cell type specific manner. Often individual cellular components of complex tissues will express different splicing programs. Thus, when studying splicing in multicellular organisms it is critical to determine the exon inclusion levels in individual cells positioned in the context of their native tissue or organ. Here we describe how a fluorescent splicing reporter in combination with in vivo electroporation can be used to visualize alternative splicing in individual cells within mature tissues. In a test case we show how the splicing of a photoreceptor specific exon can be visualized within the mouse retina. The retina was chosen as an example of a complex tissue that is fragile and whose cells cannot be studied in culture. With minor modifications to the injection and electroporation procedure, the protocol we outline can be applied to other tissues and organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stoilov P, Lin C-H, Damoiseaux R et al (2008) A high-throughput screening strategy identifies cardiotonic steroids as alternative splicing modulators. Proc Natl Acad Sci 105:11218–11223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Orengo JP, Bundman D, Cooper TA (2006) A bichromatic fluorescent reporter for cell-based screens of alternative splicing. Nucleic Acids Res 34:e148

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuroyanagi H, Ohno G, Sakane H et al (2010) Visualization and genetic analysis of alternative splicing regulation in vivo using fluorescence reporters in transgenic Caenorhabditis elegans. Nat Protoc 5:1495–1517

    Article  CAS  PubMed  Google Scholar 

  4. Somarelli JA, Schaeffer D, Bosma R et al (2013) Fluorescence-based alternative splicing reporters for the study of epithelial plasticity in vivo. RNA 19:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Newman EA, Muh SJ, Hovhannisyan RH et al (2006) Identification of RNA-binding proteins that regulate FGFR2 splicing through the use of sensitive and specific dual color fluorescence minigene assays. RNA 12:1129–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takeuchi A, Hosokawa M, Nojima T et al (2010) Splicing reporter mice revealed the evolutionally conserved switching mechanism of tissue-specific alternative exon selection. PLoS One 5:e10946

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ohno G, Hagiwara M, Kuroyanagi H (2008) STAR family RNA-binding protein ASD-2 regulates developmental switching of mutually exclusive alternative splicing in vivo. Genes Dev 22:360–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci 101:16–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nickerson JM, Goodman P, Chrenek MA et al (2012) Subretinal delivery and electroporation in pigmented and nonpigmented adult mouse eyes. Methods Mol Biol 884:53–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Magin-Lachmann C, Kotzamanis G, D’Aiuto L et al (2004) In vitro and in vivo delivery of intact BAC DNA—comparison of different methods. J Gene Med 6:195–209

    Article  CAS  PubMed  Google Scholar 

  11. Barnabé-Heider F, Meletis K, Eriksson M et al (2008) Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation. Nat Methods 5:189–196

    Article  PubMed  Google Scholar 

  12. Young JL, Dean DA (2015) Electroporation-mediated gene delivery (chapter three). Adv Genet 89:49–88

    Article  PubMed  Google Scholar 

  13. Heller R, Cruz Y, Heller LC et al (2010) Electrically mediated delivery of plasmid DNA to the skin, using a multielectrode array. Hum Gene Ther 21:357–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Young JL, Barravecchia MS, Dean DA (2014) Electroporation-mediated gene delivery to the lungs. Methods Mol Biol 1121:189–204

    Article  CAS  PubMed  Google Scholar 

  15. Aihara H, Miyazaki J (1998) Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 16:867–870

    Article  CAS  PubMed  Google Scholar 

  16. Tevaearai HT, Gazdhar A, Giraud M-N et al (2014) In vivo electroporation-mediated gene delivery to the beating heart. Methods Mol Biol 1121:223–229

    Article  CAS  PubMed  Google Scholar 

  17. De Vry J, Martínez-Martínez P, Losen M et al (2010) In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog Neurobiol 92:227–244

    Article  PubMed  Google Scholar 

  18. Heller R, Jaroszeski M, Atkin A et al (1996) In vivo gene electroinjection and expression in rat liver. FEBS Lett 389:225–228

    Article  CAS  PubMed  Google Scholar 

  19. Michaelis M, Sobczak A, Weitzel JM (2014) In vivo microinjection and electroporation of mouse testis. J Vis Exp 23(90)

    Google Scholar 

  20. DeWoody JA, Schupp J, Kenefic L et al. (2004) Universal method for producing ROX-labeled size standards suitable for automated genotyping, BioTechniques 37: 348, 350, 352

    Google Scholar 

  21. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Avon, MA, Three-volume set

    Google Scholar 

  22. Cooper TA (2005) Use of minigene systems to dissect alternative splicing elements. Methods 37:331–340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zachary Wright and Abigail Hayes for advice and assistance in taking pictures. This work was supported by grants from the National Institutes of Health (EY017035), West Virginia Lions, Lions Club International Fund, and an internal grant from West Virginia University. Imaging experiments were performed in the West Virginia University Microscope Imaging Facility, which has been supported by the Mary Babb Randolph Cancer Center and NIH grants P20 RR016440, P30 GM103488, and P20 GM103434.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Stoilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Murphy, D., Kolandaivelu, S., Ramamurthy, V., Stoilov, P. (2016). Analysis of Alternative Pre-RNA Splicing in the Mouse Retina Using a Fluorescent Reporter. In: Lin, RJ. (eds) RNA-Protein Complexes and Interactions. Methods in Molecular Biology, vol 1421. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3591-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3591-8_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3589-5

  • Online ISBN: 978-1-4939-3591-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics