Skip to main content

Generation and Purification of Tetraploid Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1413))

Abstract

Tetraploid cells are genetically unstable and have the capacity to promote the development and/or progression of human malignancies. It is now estimated that ~40 % of all solid tumors have passed through a tetraploid intermediate stage at some point during their development. Understanding the biological characteristics of tetraploid cells that impart oncogenic properties is therefore a highly relevant and fundamentally important aspect of cancer biology. Here, we describe strategies to efficiently generate and purify tetraploid cells for use in cell biological studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Coward J, Harding A (2014) Size Does Matter: Why Polyploid Tumor Cells are Critical Drug Targets in the War on Cancer. Front Oncol 4:123. doi:10.3389/fonc.2014.00123

    Article  PubMed  PubMed Central  Google Scholar 

  2. Davoli T, de Lange T (2012) Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. Cancer Cell 21:765–776. doi:10.1016/j.ccr.2012.03.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T, Lazebnik Y (2007) A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr Biol 17:431–437. doi:10.1016/j.cub.2007.01.049

    Article  CAS  PubMed  Google Scholar 

  4. Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047. doi:10.1038/nature04217

    Article  CAS  PubMed  Google Scholar 

  5. Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282. doi:10.1038/nature08136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ganem NJ, Storchova Z, Pellman D (2007) Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17:157–162. doi:10.1016/j.gde.2007.02.011

    Article  CAS  PubMed  Google Scholar 

  7. Lundberg G, Jin Y, Sehic D, Ora I, Versteeg R, Gisselsson D (2013) Intratumour diversity of chromosome copy numbers in neuroblastoma mediated by on-going chromosome loss from a polyploid state. PLoS One 8, e59268. doi:10.1371/journal.pone.0059268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW, Benezra R (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11:9–23. doi:10.1016/j.ccr.2006.10.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Storchova Z, Kuffer C (2008) The consequences of tetraploidy and aneuploidy. J Cell Sci 121:3859–3866. doi:10.1242/jcs.039537

    Article  CAS  PubMed  Google Scholar 

  10. Dewhurst SM, McGranahan N, Burrell RA, Rowan AJ, Gronroos E, Endesfelder D, Joshi T, Mouradov D, Gibbs P, Ward RL, Hawkins NJ, Szallasi Z, Sieber OM, Swanton C (2014) Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution. Cancer Discov 4:175–185. doi:10.1158/2159-8290.CD-13-0285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, Lawrence MS, Zhang C-Z, Wala J, Mermel CH, Sougnez C, Gabriel SB, Hernandez B, Shen H, Laird PW, Getz G, Meyerson M, Beroukhim R (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140. doi:10.1038/ng.2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong C, Stearns T (2005) Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure. BMC Cell Biol 6:6. doi:10.1186/1471-2121-6-6

    Article  PubMed  PubMed Central  Google Scholar 

  13. Andreassen PR, Lohez OD, Lacroix FB, Margolis RL (2001) Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol Biol Cell 12:1315–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carter SB (1967) Effects of cytochalasins on mammalian cells. Nature 213:261–264

    Article  CAS  PubMed  Google Scholar 

  15. Ganem NJ, Cornils H, Chiu SY, O'Rourke KP, Arnaud J, Yimlamai D, Thery M, Camargo FD, Pellman D (2014) Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell 158:833–848. doi:10.1016/j.cell.2014.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rieder CL, Maiato H (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7:637–651. doi:10.1016/j.devcel.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  17. Ganem NJ, Pellman D (2012) Linking abnormal mitosis to the acquisition of DNA damage. J Cell Biol 199:871–881. doi:10.1083/jcb.201210040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Orth JD, Loewer A, Lahav G, Mitchison TJ (2012) Prolonged mitotic arrest triggers partial activation of apoptosis, resulting in DNA damage and p53 induction. Mol Biol Cell 23:567–576. doi:10.1091/mbc.E11-09-0781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krzywicka-Racka A, Sluder G (2011) Repeated cleavage failure does not establish centrosome amplification in untransformed human cells. J Cell Biol 194:199–207. doi:10.1083/jcb.201101073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Panopoulos A, Pacios-Bras C, Choi J, Yenjerla M, Sussman MA, Fotedar R, Margolis RL (2014) Failure of cell cleavage induces senescence in tetraploid primary cells. Mol Biol Cell 25:3105–3118. doi:10.1091/mbc.E14-03-0844

    Article  PubMed  PubMed Central  Google Scholar 

  21. Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299:1743–1747. doi:10.1126/science.1081412

    Article  CAS  PubMed  Google Scholar 

  22. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498. doi:10.1016/j.cell.2007.12.033

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

N.J.G is a Karin Grunebaum Cancer Research Foundation Fellow in the Shamim and Ashraf Dahod Breast Cancer Research Laboratories and is supported by grants from the Richard and Susan Smith Family Foundation, the Searle Scholars Program, the Melanoma Research Alliance, the Skin Cancer Foundation, the Sarcoma Foundation of America, and the NIH/NCI (K99/R00 CA154531-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil J. Ganem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shenk, E.M., Ganem, N.J. (2016). Generation and Purification of Tetraploid Cells. In: Chang, P., Ohi, R. (eds) The Mitotic Spindle. Methods in Molecular Biology, vol 1413. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3542-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3542-0_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3540-6

  • Online ISBN: 978-1-4939-3542-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics