Skip to main content

Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization

  • Protocol
  • First Online:
The Nuclear Envelope

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1411))

Abstract

The genome has a special relationship with the nuclear envelope in cells. Much of the genome is anchored at the nuclear periphery, tethered by chromatin binding proteins such nuclear lamins and other integral membrane proteins. Even though there are global assays such as DAM-ID or ChIP to assess what parts of the genome are associated with the nuclear envelope, it is also essential to be able to visualize regions of the genome in order to reveal their individual relationships with nuclear structures in single cells. This is executed by fluorescence in situ hybridization (FISH) in 2-dimensional flattened nuclei (2D-FISH) or 3-dimensionally preserved cells (3D-FISH) in combination with indirect immunofluorescence to reveal structural proteins. This chapter explains the protocols for 2D- and 3D-FISH in combination with indirect immunofluorescence and discusses options for image capture and analysis. Due to the nuclear envelope proteins being part of the non-extractable nucleoskeleton, we also describe how to prepare DNA halos through salt extraction and how they can be used to study genome behavior and association when combined with 2D-FISH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourne G, Moir C, Bikkul U et al (2013) Interphase chromosome behavior in normal and diseased cells. In: Yurov Y (ed) Human interphase chromosomes: the biomedical aspects. Springer, New York, pp 9–33

    Chapter  Google Scholar 

  2. Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Chromosoma 114:212–229

    Article  PubMed  Google Scholar 

  3. Németh A, Conesa A, Santoyo-Lopez J et al (2010) Initial genomics of the human nucleolus. PLoS Genet 6:1–11

    Article  Google Scholar 

  4. Ikegami K, Egelhofer TA, Strome S, Lieb JD (2010) Caenorhabditis elegans chromosome arms are anchored to the nuclear membrane via discontinuous association with LEM-2. Genome Biol 11:1–20

    Article  Google Scholar 

  5. Guelen L, Pagie L, Brasset E et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951

    Article  CAS  PubMed  Google Scholar 

  6. Bridger JM, Arican-Goktas HD, Foster HA et al (2014) The non-random repositioning of whole chromosomes and individual gene loci in interphase nuclei and its relevance in disease, infection, aging, and cancer. Adv Exp Med Biol 773:263–279

    Article  CAS  PubMed  Google Scholar 

  7. Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445

    Article  CAS  PubMed  Google Scholar 

  8. Zink D, Cremer T, Saffrich R et al (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102:241–251

    Article  CAS  PubMed  Google Scholar 

  9. Wallace LM, Moreo A, Clark KR, Harper SQ (2013) Dose-dependent toxicity of humanized renilla reniformis GFP (hrGFP) limits its utility as a reporter gene in mouse muscle. molecular therapy—nucleic acids 2:1–6.

    Google Scholar 

  10. Elcock LS, Bridger JM (2010) Exploring the relationship between interphase gene positioning, transcriptional regulation and the nuclear matrix. Biochem Soc Trans 38:263–267

    Article  CAS  PubMed  Google Scholar 

  11. Elcock LS, Bridger JM (2008) Exploring the effects of a dysfunctional nuclear matrix. Biochem Soc Trans 36:1378–1383

    Article  CAS  PubMed  Google Scholar 

  12. Bridger JM, Kalla C, Wodrich H et al (2005) Nuclear RNAs confined to a reticular compartment between chromosome territories. Exp Cell Res 302:180–193

    Article  CAS  PubMed  Google Scholar 

  13. Lampel S, Bridger JM, Zirbel R, Mathieu U, Lichter P (1997) Nuclear RNA accumulations contain released transcripts and exhibit specific distributions with respect to Sm antigen foci. DNA Cell Biol 16:1133–1142

    Article  CAS  PubMed  Google Scholar 

  14. Volpi EV, Bridger JM (2008) FISH glossary: an overview of the fluorescence in situ hybridization technique. Biotechniques 45:385–386

    Article  CAS  PubMed  Google Scholar 

  15. Marshall WF, Dernburg AF, Harmon B, Agard DA, Sedat JW (1996) Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in Drosophila melanogaster. Mol Biol Cell 7:825–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Markaki Y, Smeets D, Fiedler S et al (2012) The potential of 3D‐FISH and super‐resolution structured illumination microscopy for studies of 3D nuclear architecture. Bioessays 34:412–426

    Article  PubMed  Google Scholar 

  17. Luo L, Gassman KL, Petell LM et al (2009) The nuclear periphery of embryonic stem cells is a transcriptional permissive and repressive compartment. J Cell Sci 122:3729–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zuleger N, Boyle S, Kelly DA et al (2013) Specific nuclear envelope transmembrane proteins can promote the location of chromosomes to and from the nuclear periphery. Genome Biol 14:1–48

    Article  Google Scholar 

  19. Lund E, Oldenburg AR, Delbarre E et al (2013) Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Res 23:1580–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bridger JM, Herrmann H, Muenkel C, Lichter P (1998) Identification of an interchromosomal compartment by polymerization of nuclear-targeted vimentin. J Cell Sci 111:1241–1253

    CAS  PubMed  Google Scholar 

  21. Bridger JM, Lichter P (1999) Analysis of mammalian interphase chromosomes by FISH and immunofluorescence. In: Bickmore W (ed) Chromosome structural analysis: a practical approach. Oxford University Press, Oxford, UK, pp 103–123

    Google Scholar 

  22. Solovei I, Cremer M (2010) 3D-FISH on cultured cells combined with immunostaining. Methods Mol Biol 659:117–126

    Article  CAS  PubMed  Google Scholar 

  23. Hatch E, Hetzer M (2014) Breaching the nuclear envelope in development and disease. J Cell Biol 205:133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bridger JM, Kill IR (2004) Aging of Hutchinson–Gilford progeria syndrome fibroblasts is characterised by hyperproliferation and increased apoptosis. Exp Gerontol 39:717–724

    Article  CAS  PubMed  Google Scholar 

  25. Goldman RD, Shumaker DK, Erdos MR et al (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci U S A 101:8963–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shimi T, Pfleghaar K, Kojima S et al (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev 22:3409–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bercht Pfleghaar K, Taimen P, Butin-Israeli V et al (2015) Gene-rich chromosomal regions are preferentially localized in the lamin B deficient nuclear blebs of atypical progeria cells. Nucleus 6:66–76

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lalmansingh A, Arora K, DeMarco R et al (2013) High-throughput RNA FISH analysis by imaging flow cytometry reveals that pioneer factor Foxa1 reduces transcriptional stochasticity. PLoS One 8:1–12

    Article  Google Scholar 

  29. Basiji DA, Ortyn WE, Liang L, Venkatachalam V, Morrissey P (2007) Cellular image analysis and imaging by flow cytometry. Clin Lab Med 27:653–670

    Article  PubMed  PubMed Central  Google Scholar 

  30. Roukos V, Pegoraro G, Voss TC, Misteli T (2015) Cell cycle staging of individual cells by fluorescence microscopy. Nat Protoc 10:334–348

    Article  PubMed  Google Scholar 

  31. Shiels C, Adams NM, Islam SA, Stephens DA, Freemont PS (2007) Quantitative analysis of cell nucleus organisation. PLoS Comput Biol 3(7), e138

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bewersdorf J, Bennett BT, Knight KL (2006) H2AX chromatin structures and their response to DNA damage revealed by 4Pi microscopy. Proceedings of the National Academy of Sciences of the United States of America 103:18137–18142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jost K, Haase S, Smeets D et al (2011) 3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Res 39:1–8

    Article  Google Scholar 

  34. Bolzer A, Kreth G, Solovei I et al (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:826–842

    Article  CAS  Google Scholar 

  35. Gué M, Messaoudi C, Sun JS, Boudier T (2005) Smart 3D-FISH: automation of distance analysis in nuclei of interphase cells by image processing. Cytometry A 67:18–26

    Article  PubMed  Google Scholar 

  36. Iannuccelli E, Mompart F, Gellin J, Lahbib-Mansais Y, Yerle M, Boudier T (2010) NEMO: a tool for analyzing gene and chromosome territory distributions from 3D-FISH experiments. Bioinformatics 26:696–697

    Article  CAS  PubMed  Google Scholar 

  37. Foster HA, Griffin DK, Bridger JM (2012) Interphase chromosome positioning in in vitro porcine cells and ex vivo porcine tissues. BMC Cell Biol 15:13–30

    Google Scholar 

  38. Croft JA, Bridger JM, Boyle S et al (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehta IS, Kulashreshtha M, Chakraborty S, Kolthur-Seetharam U, Rao BJ (2013) Chromosome territories reposition during DNA damage-repair response. Genome Biol 14:1–15

    Article  Google Scholar 

  40. Skinner BM, Robertson LB, Tempest HG et al (2009) Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis. BMC Genomics 10:1–11

    Article  Google Scholar 

  41. Federico C, Cantarella CD, Di Mare P, Tosi S, Saccone S (2008) The radial arrangement of the human chromosome 7 in the lymphocyte cell nucleus is associated with chromosomal band gene density. Chromosoma 117:399–410

    Article  CAS  PubMed  Google Scholar 

  42. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80:224–234

    Article  CAS  PubMed  Google Scholar 

  43. Harris P, Boyd E, Ferguson-Smith MA (1985) Optimising human chromosome separation for the production of chromosome-specific DNA libraries by flow sorting. Hum Genet 70:59–65

    Article  CAS  PubMed  Google Scholar 

  44. Meltzer P, Bittner M (2001) Chromosome microdissection. Curr Protoc Hum Genet. Chapter 4:Unit4.8

    Google Scholar 

  45. Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  CAS  PubMed  Google Scholar 

  46. Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10:149–152

    Article  CAS  PubMed  Google Scholar 

  47. Mehta IS, Figgitt M, Clements CS, Kill IR, Bridger JM (2007) Alterations to nuclear architecture and genome behavior in senescent cells. Ann N Y Acad Sci 1100:250–263

    Article  CAS  PubMed  Google Scholar 

  48. Mehta IS, Amira M, Harvey AJ, Bridger JM (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 11:1–23

    Article  Google Scholar 

  49. Bridger JM, Kill IR, Lichter P (1998) Association of pKi-67 with satellite DNA of the human genome in early G1 cells. Chromosome Res 6:13–24

    Article  CAS  PubMed  Google Scholar 

  50. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Markaki Y, Smeets D, Cremer M, Schermelleh L (2013) Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy. Methods Mol Biol 950:43–64

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Marion Cremer for allowing us to include some of their 3D -SIM super-resolution images of chromosomes and nuclear envelope, Dr Karen Meaburn for helpful discussions and SPARKs children’s charity for funding CSC, Brunel University London Progeria Research Fund for partial funding of UB, The Gordon Memorial Trust for supporting MHA and the EURO-laminopathies consortium FP6 for supporting LSG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna M. Bridger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Clements, C.S., Bikkul, U., Ahmed, M.H., Foster, H.A., Godwin, L.S., Bridger, J.M. (2016). Visualizing the Spatial Relationship of the Genome with the Nuclear Envelope Using Fluorescence In Situ Hybridization. In: Shackleton, S., Collas, P., Schirmer, E. (eds) The Nuclear Envelope. Methods in Molecular Biology, vol 1411. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3530-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3530-7_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3528-4

  • Online ISBN: 978-1-4939-3530-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics