Skip to main content

Controlling Protein Activity and Degradation Using Blue Light

  • Protocol
  • First Online:
Optogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1408))

Abstract

Regulation of protein stability is a fundamental process in eukaryotic cells and pivotal to, e.g., cell cycle progression, faithful chromosome segregation, or protein quality control. Synthetic regulation of protein stability requires conditional degradation sequences (degrons) that induce a stability switch upon a specific signal. Fusion to a selected target protein permits to influence virtually every process in a cell. Light as signal is advantageous due to its precise applicability in time, space, quality, and quantity. Light control of protein stability was achieved by fusing the LOV2 photoreceptor domain of Arabidopsis thaliana phototropin1 with a synthetic degron (cODC1) derived from the carboxy-terminal degron of ornithine decarboxylase to obtain the photosensitive degron (psd) module. The psd module can be attached to the carboxy terminus of target proteins that are localized to the cytosol or nucleus to obtain light control over their stability. Blue light induces structural changes in the LOV2 domain, which in turn lead to activation of the degron and thus proteasomal degradation of the whole fusion protein. Variants of the psd module with diverse characteristics are useful to fine-tune the stability of a selected target at permissive (darkness) and restrictive conditions (blue light).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  2. Rakhit R, Navarro R, Wandless TJ (2014) Chemical biology strategies for posttranslational control of protein function. Chem Biol 21(9):1238–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kanemaki MT (2013) Frontiers of protein expression control with conditional degrons. Pflugers Arch 465(3):419–425

    Article  CAS  PubMed  Google Scholar 

  4. Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9(9):679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jariel-Encontre I, Bossis G, Piechaczyk M (2008) Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta 1786(2):153–177

    CAS  PubMed  Google Scholar 

  6. Jungbluth M, Renicke C, Taxis C (2010) Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Syst Biol 4:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gautier A, Gauron C, Volovitch M, Bensimon D, Jullien L, Vriz S (2014) How to control proteins with light in living systems. Nat Chem Biol 10(7):533–541

    Article  CAS  PubMed  Google Scholar 

  8. Zhang K, Cui B (2015) Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33(2):92–100

    Article  PubMed  Google Scholar 

  9. Renicke C, Schuster D, Usherenko S, Essen LO, Taxis C (2013) A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem Biol 20(4):619–626

    Article  CAS  PubMed  Google Scholar 

  10. Bonger KM, Rakhit R, Payumo AY, Chen JK, Wandless TJ (2014) General method for regulating protein stability with light. ACS Chem Biol 9(1):111–115

    Article  CAS  PubMed  Google Scholar 

  11. Usherenko S, Stibbe H, Musco M, Essen LO, Kostina EA, Taxis C (2014) Photo-sensitive degron variants for tuning protein stability by light. BMC Syst Biol 8:128

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pereira G, Tanaka TU, Nasmyth K, Schiebel E (2001) Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. EMBO J 20(22):6359–6370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21(11):947–962

    Article  CAS  PubMed  Google Scholar 

  14. Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16(5-6):339–346

    Article  CAS  PubMed  Google Scholar 

  15. Taxis C, Knop M (2006) System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques 40(1):73–78

    Article  CAS  PubMed  Google Scholar 

  16. Taxis C, Knop M (2012) TIPI: TEV protease-mediated induction of protein instability. Methods Mol Biol 832:611–626

    Article  CAS  PubMed  Google Scholar 

  17. Ausubel FM, Kingston RE, Seidman FG, Struhl K, Moore DD, Brent R, Smith FA (eds) (1995) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  18. Yaffe MP, Schatz G (1984) Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci U S A 81(15):4819–4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  20. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76(9):4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E (1999) Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15(10B):963–972

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Störmer for her excellent technical assistance. This work was supported by the DFG grant TA320/3-1 and the DFG-funded graduate school GRK1216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Taxis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lutz, A.P., Renicke, C., Taxis, C. (2016). Controlling Protein Activity and Degradation Using Blue Light. In: Kianianmomeni, A. (eds) Optogenetics. Methods in Molecular Biology, vol 1408. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3512-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3512-3_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3510-9

  • Online ISBN: 978-1-4939-3512-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics