Skip to main content

Production of Japanese Encephalitis Virus-Like Particles Using Insect Cell Expression Systems

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1404))

Abstract

Virus-like particles (VLPs) can be produced via the expression of virus surface proteins that self-assemble into particulate structures in recombinant protein expression systems. Expression of the DNA fragment encoding the Japanese encephalitis (JE) virus prM signal peptide, the precursor (prM) of the viral membrane protein (M), and the envelope glycoprotein (E) allows the production of a secretory form of VLPs. Expression systems that use lepidopteran insect cells, such as the baculovirus–insect cell system and stably transformed insect cells, can be used for the efficient production of JE VLPs. This chapter describes the production of JE VLPs from stably transformed lepidopteran insect cells.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Noad R, Roy P (2003) Virus-like particles as immunogens. Trends Microbiol 11:438–444

    CAS  PubMed  Google Scholar 

  2. Grgacic EVL, Anderson DA (2006) Virus-like particles: passport to immune recognition. Methods 40:60–65

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Roy P, Noad R (2008) Virus-like particles as a vaccine delivery system: myths and facts. Hum Vaccin 4:5–8

    CAS  PubMed  Google Scholar 

  4. Kang SM, Song JM, Quan FS, Compans RW (2009) Influenza vaccines based on virus-like particles. Virus Res 143:140–146

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kushnir N, Streatfield SJ, Yusibov V (2012) Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 31:58–83

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeltins A (2013) Construction and characterization of virus-like particles: a review. Mol Biotechnol 53:92–107

    CAS  PubMed  Google Scholar 

  7. van Oers MM (2006) Vaccines for viral and parasitic diseases produced with baculovirus vectors. Adv Virus Res 68:193–253

    PubMed  PubMed Central  Google Scholar 

  8. Vicente T, Roldão A, Peixoto C, Carrondo MJT, Alves PM (2011) Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 107:S42–S48

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cox MMJ (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30:1759–1766

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fernandes F, Teixeira AP, Carinhas N, Carrondo MJT, Alves PM (2013) Insect cells as a production platform of complex virus-like particles. Expert Rev Vaccines 12:225–236

    CAS  PubMed  Google Scholar 

  11. Yamaji H (2014) Suitability and perspectives on using recombinant insect cells for the production of virus-like particles. Appl Microbiol Biotechnol 98:1963–1970

    CAS  PubMed  Google Scholar 

  12. Luckow VA (1995) Protein production and processing from baculovirus expression vectors. In: Shuler ML, Wood HA, Granados RR, Hammer DA (eds) Baculovirus expression systems and biopesticides. Wiley-Liss, New York, NY, pp 51–90

    Google Scholar 

  13. Schiller JT, Castellsagué X, Garland SM (2012) A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30S:F123–F138

    Google Scholar 

  14. Buckland B, Boulanger R, Fino M, Srivastava I, Holtz K, Khramtsov N, McPherson C, Meghrous J, Kubera P, Cox MMJ (2014) Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process. Vaccine 32:5496–5502

    CAS  PubMed  Google Scholar 

  15. Farrell PJ, Lu M, Prevost J, Brown C, Behie L, Iatrou K (1998) High-level expression of secreted glycoproteins in transformed lepidopteran insect cells using a novel expression vector. Biotechnol Bioeng 60:656–663

    CAS  PubMed  Google Scholar 

  16. Farrell PJ, Behie LA, Iatrou K (1999) Transformed lepidopteran insect cells: new sources of recombinant human tissue plasminogen activator. Biotechnol Bioeng 64:426–433

    CAS  PubMed  Google Scholar 

  17. Keith MB, Farrell PJ, Iatrou K, Behie LA (1999) Screening of transformed insect cell lines for recombinant protein production. Biotechnol Prog 15:1046–1052

    CAS  PubMed  Google Scholar 

  18. Douris V, Swevers L, Labropoulou V, Andronopoulou E, Georgoussi Z, Iatrou K (2006) Stably transformed insect cell lines: tools for expression of secreted and membrane-anchored proteins and high-throughput screening platforms for drug and insecticide discovery. Adv Virus Res 68:113–156

    CAS  PubMed  Google Scholar 

  19. Harrison RL, Jarvis DL (2007) Transforming lepidopteran insect cells for continuous recombinant protein expression. In: Murhammer DW (ed) Baculovirus and insect cell expression protocols, 2nd edn, Methods in molecular biology, vol 388. Humana, Totowa, NJ, pp 299–315

    Google Scholar 

  20. Yamaji H, Manebe T, Watakabe K, Muraoka M, Fuji I, Fukuda H (2008) Production of functional antibody Fab fragment by recombinant insect cells. Biochem Eng J 41:203–209

    CAS  Google Scholar 

  21. Yamaji H (2011) Production of antibody in insect cells. In: Al-Rubeai M (ed) Antibody expression and production, Cell engineering, vol 7. Springer Science + Business Media, Dordrecht, pp 53–76

    Google Scholar 

  22. Yamaji H, Nakamura M, Kuwahara M, Takahashi Y, Katsuda T, Konishi E (2013) Efficient production of Japanese encephalitis virus-like particles by recombinant lepidopteran insect cells. Appl Microbiol Biotechnol 97:1071–1079

    CAS  PubMed  Google Scholar 

  23. Yamaji H, Segawa M, Nakamura M, Katsuda T, Kuwahara M, Konishi E (2012) Production of Japanese encephalitis virus-like particles using the baculovirus–insect cell system. J Biosci Bioeng 114:657–662

    CAS  PubMed  Google Scholar 

  24. Furuta T, Ogawa T, Yamaji H (2012) Production of antibody fragments using the baculovirus–insect cell system. In: Chames P (ed) Antibody engineering: methods and protocols, 2nd edn, Methods in molecular biology, vol 907. Springer Science + Business Media, Dordrecht, pp 371–387

    Google Scholar 

  25. Konishi E, Fujii A (2002) Dengue type 2 virus subviral extracellular particles produced by a stably transfected mammalian cell line and their evaluation for a subunit vaccine. Vaccine 20:1058–1067

    CAS  PubMed  Google Scholar 

  26. Kuwahara M, Konishi E (2010) Evaluation of extracellular subviral particles of dengue virus type 2 and Japanese encephalitis virus produced by Spodoptera frugiperda cells for use as vaccine and diagnostic antigens. Clin Vaccine Immunol 17:1560–1566

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ishikawa T, Yamanaka A, Konishi E (2014) A review of successful flavivirus vaccines and the problems with those flaviviruses for which vaccines are not yet available. Vaccine 32:1326–1337

    CAS  PubMed  Google Scholar 

  28. Heinz FX, Allison SL (2003) Fluvivirus structure and membrane fusion. Adv Virus Res 59:63–97

    CAS  PubMed  Google Scholar 

  29. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22

    CAS  PubMed  Google Scholar 

  30. Stiasny K, Heinz FX (2006) Flavivirus membrane fusion. J Gen Virol 87:2755–2766

    CAS  PubMed  Google Scholar 

  31. Li L, Lok S-M, Yu I-M, Zhang Y, Kuhn RJ, Chen J, Rossmann MG (2008) The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319:1830–1834

    CAS  PubMed  Google Scholar 

  32. Yu I-M, Zhang W, Holdaway HA, Li L, Kostyuchenko VA, Chipman PR, Kuhn RJ, Rossmann MG, Chen J (2008) Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319:1834–1837

    CAS  PubMed  Google Scholar 

  33. Konishi E, Fujii A, Mason PW (2001) Generation and characterization of a mammalian cell line continuously expressing Japanese encephalitis virus subviral particles. J Virol 75:2204–2212

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kojima A, Yasuda A, Asanuma H, Ishikawa T, Takamizawa A, Yasui K, Kurata T (2003) Stable high-producer cell clone expressing virus-like particles of the Japanese encephalitis virus E protein for a second-generation subunit vaccine. J Virol 77:8745–8755

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Davis BS, Chang GJJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning ML (2001) West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 75:4040–4047

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamaji H, Konishi E (2013) Production of Japanese encephalitis virus-like particles in insect cells. Bioengineered 4:438–442

    PubMed  PubMed Central  Google Scholar 

  37. Jarvis DL, Weinkauf C, Guarino LA (1996) Immediate-early baculovirus vectors for foreign gene expression in transformed or infected insect cells. Protein Expr Purif 8:191–203

    CAS  PubMed  Google Scholar 

  38. Lu M, Farrell PJ, Johnson R, Iatrou K (1997) A baculovirus (Bombyx mori nuclear polyhedrosis virus) repeat element functions as a powerful constitutive enhancer in transformed insect cells. J Biol Chem 272:30724–30728

    CAS  PubMed  Google Scholar 

  39. Lobigs M (1993) Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc Natl Acad Sci U S A 90:6218–6222

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang CYH, Silengo SJ, Whiteman MC, Kinney RM (2005) Chimeric dengue 2 PDK-53/West Nile NY99 viruses retain the phenotypic attenuation markers of the candidate PDK-53 vaccine virus and protect mice against lethal challenge with West Nile virus. J Virol 79:7300–7310

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu SC, Lin YJ, Yu CH (2003) Baculovirus-insect cell expression, purification, and immunological studies of the full-length Japanese encephalitis virus envelope protein. Enzyme Microb Technol 33:438–444

    CAS  Google Scholar 

  42. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  43. O’Reilly DR, Miller LK, Luckow VA (1994) Baculovirus expression vectors. A laboratory manual. Oxford University Press, New York, NY

    Google Scholar 

  44. Murhammer DW (ed) (2007) Baculovirus and insect cell expression protocols, 2nd edn, Methods in molecular biology, vol 388. Humana, Totowa, NJ

    Google Scholar 

  45. Growth and maintenance of insect cell lines. User guide. Life Technologies, Carlsbad, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Yamaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yamaji, H., Konishi, E. (2016). Production of Japanese Encephalitis Virus-Like Particles Using Insect Cell Expression Systems. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1404. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-3389-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3389-1_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-3388-4

  • Online ISBN: 978-1-4939-3389-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics