Skip to main content

Facile Synthetic Access to Glycopeptide Antibiotic Precursor Peptides for the Investigation of Cytochrome P450 Action in Glycopeptide Antibiotic Biosynthesis

  • Protocol
  • First Online:
Nonribosomal Peptide and Polyketide Biosynthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1401))

Abstract

The glycopeptide antibiotics are an important class of complex, medically relevant peptide natural products. Given that the production of such compounds all stems from in vivo biosynthesis, understanding the mechanisms of the natural assembly system—consisting of a nonribosomal-peptide synthetase machinery (NRPS) and further modifying enzymes—is vital. In order to address the later steps of peptide biosynthesis, which are catalyzed by Cytochrome P450s that interact with the peptide-producing nonribosomal peptide synthetase, peptide substrates are required: these peptides must also be in a form that can be conjugated to carrier protein domains of the nonribosomal peptide synthetase machinery. Here, we describe a practical and effective route for the solid phase synthesis of glycopeptide antibiotic precursor peptides as their Coenzyme A (CoA) conjugates to allow enzymatic conjugation to carrier protein domains. This route utilizes Fmoc-chemistry suppressing epimerization of racemization-prone aryl glycine derivatives and affords high yields and excellent purities, requiring only a single step of simple solid phase extraction for chromatographic purification. With this, comprehensive investigations of interactions between various NRPS-bound substrates and Cytochrome P450s are enabled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hur GH, Vickery CR, Burkart MD (2012) Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 29:1074–1098

    Article  CAS  PubMed  Google Scholar 

  2. Yim G, Thaker MN, Koteva K et al (2014) Glycopeptide antibiotic biosynthesis. J Antibiot 67:31–41

    Article  CAS  PubMed  Google Scholar 

  3. Cryle MJ, Brieke C, Haslinger K (2014) Oxidative transformations of amino acids and peptides catalysed by Cytochromes P450. In: Farkas E, Ryadnov M (eds) Amino acids, peptides and proteins, vol 38. Royal Society of Chemistry, Cambridge, pp 1–36

    Chapter  Google Scholar 

  4. Cryle MJ, Schlichting I (2008) Structural insights from a P450 carrier protein complex reveal how specificity is achieved in the P450BioI-ACP complex. Proc Natl Acad Sci U S A 105:15696–15701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Haslinger K, Brieke C, Uhlmann S et al (2014) The structure of a transient complex of a nonribosomal peptide synthetase and a cytochrome P450 monooxygenase. Angew Chem Int Ed 53:8518–8522

    Article  CAS  Google Scholar 

  6. Süssmuth RD, Pelzer S, Nicholson G et al (1999) New advances in the biosynthesis of glycopeptide antibiotics of the vancomycin type from Amycolatopsis mediterranei. Angew Chem Int Ed 38:1976–1979

    Article  Google Scholar 

  7. Bischoff D, Pelzer S, Holtzel A et al (2001) The biosynthesis of vancomycin-type glycopeptide antibiotics—new insights into the cyclization steps. Angew Chem Int Ed 40:1693–1696

    Article  CAS  Google Scholar 

  8. Bischoff D, Pelzer S, Bister B et al (2001) The biosynthesis of vancomycin-type glycopeptide antibiotics—the order of the cyclization steps. Angew Chem Int Ed 40:4688–4691

    Article  CAS  Google Scholar 

  9. Hadatsch B, Butz D, Schmiederer T et al (2007) The biosynthesis of teicoplanin-type glycopeptide antibiotics: assignment of P450 mono-oxygenases to side chain cyclizations of glycopeptide A47934. Chem Biol 14:1078–1089

    Article  CAS  PubMed  Google Scholar 

  10. Stegmann E, Pelzer S, Bischoff D et al (2006) Genetic analysis of the balhimycin (vancomycin-type) oxygenase genes. J Biotechnol 124:640–653

    Article  CAS  PubMed  Google Scholar 

  11. Haslinger K, Peschke M, Brieke C et al (2015) X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature. 521:105–109

    Google Scholar 

  12. Woithe K, Geib N, Zerbe K et al (2007) Oxidative phenol coupling reactions catalyzed by OxyB: a cytochrome P450 from the vancomycin producing organism. Implications for vancomycin biosynthesis. J Am Chem Soc 129:6887–6895

    Article  CAS  PubMed  Google Scholar 

  13. Schmartz PC, Wölfel K, Zerbe K et al (2012) Substituent effects on the phenol coupling reaction catalyzed by the vancomycin biosynthetic P450 enzyme OxyB. Angew Chem Int Ed 51:11468–11472

    Article  CAS  Google Scholar 

  14. Brieke C, Kratzig V, Haslinger K et al (2015) Rapid access to glycopeptide antibiotic precursor peptides coupled with cytochrome P450-mediated catalysis: towards a biomimetic synthesis of glycopeptide antibiotics. Org Biomol Chem 13:2012–2021

    Article  CAS  PubMed  Google Scholar 

  15. Quadri LEN, Weinreb PH, Lei M et al (1998) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37:1585–1595

    Article  CAS  PubMed  Google Scholar 

  16. Vitali F, Zerbe K, Robinson JA (2003) Production of vancomycin aglycone conjugated to a peptide carrier domain derived from a biosynthetic non-ribosomal peptide synthetase. Chem Commun 21:2718–2719

    Article  Google Scholar 

  17. Nicolaou KC, Boddy CNC, Bräse S et al (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem Int Ed 38:2096–2152

    Article  Google Scholar 

  18. Freund E, Robinson JA (1999) Solid-phase synthesis of a putative heptapeptide intermediate in vancomycin biosynthesis. Chem Commun 24:2509–2510

    Article  Google Scholar 

  19. Bo Li D, Robinson JA (2005) An improved solid-phase methodology for the synthesis of putative hexa- and heptapeptide intermediates in vancomycin biosynthesis. Org Biomol Chem 3:1233–1239

    Article  PubMed  Google Scholar 

  20. Brieke C, Cryle MJ (2014) A facile Fmoc solid phase synthesis strategy to access epimerization-prone biosynthetic intermediates of glycopeptide antibiotics. Org Lett 16:2454–2457

    Article  CAS  PubMed  Google Scholar 

  21. Blanco-Canosa JB, Dawson PE (2008) An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew Chem Int Ed 47: 6851–6855

    Article  CAS  Google Scholar 

  22. Dettner F, Hänchen A, Schols D et al (2009) Total synthesis of the antiviral peptide antibiotic feglymycin. Angew Chem Int Ed 48: 1856–1861

    Article  CAS  Google Scholar 

  23. Davidsen JM, Bartley DM, Townsend CA (2013) Non-ribosomal propeptide precursor in nocardicin A biosynthesis predicted from adenylation domain specificity dependent on the MbtH family protein NocI. J Am Chem Soc 135:1749–1759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Haslinger K, Maximowitsch E, Brieke C et al (2014) Cytochrome P450 OxyBtei catalyzes the first phenolic coupling step in teicoplanin biosynthesis. ChemBioChem 15:2719–2728

    Article  CAS  PubMed  Google Scholar 

  25. Sunbul M, Marshall NJ, Zou Y et al (2009) Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase. J Mol Biol 387:883–898

    Article  CAS  PubMed  Google Scholar 

  26. Bell SG, Tan ABH, Johnson EOD et al (2010) Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2. Mol Biosyst 6:206–214

    Article  CAS  PubMed  Google Scholar 

  27. Zerbe K, Pylypenko O, Vitali F et al (2002) Crystal structure of OxyB, a cytochrome P450 implicated in an oxidative phenol coupling reaction during vancomycin biosynthesis. J Mol Biol 277:47476–47485

    CAS  Google Scholar 

  28. Dordine RL, Paneth P, Anderson VE (1995) 13C NMR and 1H-1H NOEs of coenzyme-A: conformation of the pantoic acid moiety. Bioorg Chem 23:169–181

    Article  CAS  Google Scholar 

  29. Bogomolovas J, Simon B, Sattler M et al (2009) Screening of fusion partners for high yield expression and purification of bioactive viscotoxins. Protein Expr Purif 64:16–23

    Article  CAS  PubMed  Google Scholar 

  30. Bell SG, Xu F, Johnson EOD et al (2010) Protein recognition in ferredoxin-P450 electron transfer in the class I CYP199A2 system from Rhodopseudomonas palustris. J Biol Inorg Chem 15:315–328

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max J. Cryle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Brieke, C., Kratzig, V., Peschke, M., Cryle, M.J. (2016). Facile Synthetic Access to Glycopeptide Antibiotic Precursor Peptides for the Investigation of Cytochrome P450 Action in Glycopeptide Antibiotic Biosynthesis. In: Evans, B. (eds) Nonribosomal Peptide and Polyketide Biosynthesis. Methods in Molecular Biology, vol 1401. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3375-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3375-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3373-0

  • Online ISBN: 978-1-4939-3375-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics