Skip to main content

Recent Advances in the Treatment of Immune-Mediated Inflammatory Diseases

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1371))

Abstract

The treatment of immune-mediated inflammatory diseases (IMIDs) has dramatically improved over the last two decades by the development of a series of targeted biological therapies. This paper focuses on new developments in the treatment of IMIDs. In particular, we discuss how different ways of targeting the same mediators can lead to different efficacy and safety profiles, using B cell targeting as example. In addition, we discuss the emerging field of ‘small molecules’ that target specifically intracellular processes related to cytokine signaling, cell activation, cell migration, and other processes relevant to tissue inflammation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Edwards JC, Szczepanski L, Szechinski J et al (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581

    Article  CAS  PubMed  Google Scholar 

  2. Stone JH, Merkel PA, Spiera R et al (2010) Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med 363:221–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Looney RJ, Anolik J, Sanz I (2010) A perspective on B-cell-targeting therapy for SLE. Mod Rheumatol 20:1–10

    Article  PubMed Central  PubMed  Google Scholar 

  4. Looney RJ, Anolik JH, Campbell D et al (2004) B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 50:2580–2589

    Article  CAS  PubMed  Google Scholar 

  5. Smith V, Piette Y, van Praet JT et al (2013) Two-year results of an open pilot study of a 2-treatment course with rituximab in patients with early systemic sclerosis with diffuse skin involvement. J Rheumatol 40:52–57

    Article  CAS  PubMed  Google Scholar 

  6. Meijer JM, Meiners PM, Vissink A et al (2010) Effectiveness of rituximab treatment in primary Sjogren’s syndrome: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 62:960–968

    Article  CAS  PubMed  Google Scholar 

  7. Hauser SL, Waubant E, Arnold DL et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688

    Article  CAS  PubMed  Google Scholar 

  8. Bluml S, McKeever K, Ettinger R, Smolen J, Herbst R (2013) B-cell targeted therapeutics in clinical development. Arthritis Res Ther 15(Suppl 1):S4

    Article  PubMed Central  PubMed  Google Scholar 

  9. Tan CS, Koralnik IJ (2010) Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol 9:425–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Castillo J, Milani C, Mendez-Allwood D (2009) Ofatumumab, a second-generation anti-CD20 monoclonal antibody, for the treatment of lymphoproliferative and autoimmune disorders. Expert Opin Investig Drugs 18:491–500

    Article  CAS  PubMed  Google Scholar 

  11. Taylor PC, Quattrocchi E, Mallett S, Kurrasch R, Petersen J, Chang DJ (2011) Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis 70:2119–2125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ostergaard M, Baslund B, Rigby W et al (2010) Ofatumumab, a human anti-CD20 monoclonal antibody, for treatment of rheumatoid arthritis with an inadequate response to one or more disease-modifying antirheumatic drugs: results of a randomized, double-blind, placebo-controlled, phase I/II study. Arthritis Rheum 62:2227–2238

    Article  PubMed  Google Scholar 

  13. Sorensen PS, Lisby S, Grove R et al (2014) Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology 82:573–581

    Article  CAS  PubMed  Google Scholar 

  14. Kausar F, Mustafa K, Sweis G et al (2009) Ocrelizumab: a step forward in the evolution of B-cell therapy. Expert Opin Biol Ther 9:889–895

    Article  CAS  PubMed  Google Scholar 

  15. Rigby W, Tony HP, Oelke K et al (2012) Safety and efficacy of ocrelizumab in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a forty-eight-week randomized, double-blind, placebo-controlled, parallel-group phase III trial. Arthritis Rheum 64:350–359

    Article  CAS  PubMed  Google Scholar 

  16. Tak PP, Mease PJ, Genovese MC et al (2012) Safety and efficacy of ocrelizumab in patients with rheumatoid arthritis and an inadequate response to at least one tumor necrosis factor inhibitor: results of a forty-eight-week randomized, double-blind, placebo-controlled, parallel-group phase III trial. Arthritis Rheum 64:360–370

    Article  CAS  PubMed  Google Scholar 

  17. Mysler EF, Spindler AJ, Guzman R et al (2013) Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum 65:2368–2379

    Article  CAS  PubMed  Google Scholar 

  18. Kappos L, Li D, Calabresi PA et al (2011) Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378:1779–1787

    Article  CAS  PubMed  Google Scholar 

  19. Liebman HA, Saleh MN, Bussel JB et al (2013) Low-dose anti-CD20 veltuzumab given intravenously or subcutaneously is active in relapsed immune thrombocytopenia: a phase I study. Br J Haematol 162:693–701

    Article  CAS  PubMed  Google Scholar 

  20. Goldenberg DM, Morschhauser F, Wegener WA (2010) Veltuzumab (humanized anti-CD20 monoclonal antibody): characterization, current clinical results, and future prospects. Leuk Lymphoma 51:747–755

    Article  CAS  PubMed  Google Scholar 

  21. Tedder TF (2009) CD19: a promising B cell target for rheumatoid arthritis. Nat Rev Rheumatol 5:572–577

    Article  CAS  PubMed  Google Scholar 

  22. Yazawa N, Hamaguchi Y, Poe JC, Tedder TF (2005) Immunotherapy using unconjugated CD19 monoclonal antibodies in animal models for B lymphocyte malignancies and autoimmune disease. Proc Natl Acad Sci U S A 102:15178–15183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Herbst R, Wang Y, Gallagher S et al (2010) B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther 335:213–222

    Article  CAS  PubMed  Google Scholar 

  24. Deiss A, Brecht I, Haarmann A, Buttmann M (2013) Treating multiple sclerosis with monoclonal antibodies: a 2013 update. Expert Rev Neurother 13:313–335

    Article  CAS  PubMed  Google Scholar 

  25. Dorner T, Shock A, Smith KG (2012) CD22 and autoimmune disease. Int Rev Immunol 31:363–378

    Article  PubMed  Google Scholar 

  26. Tedder TF, Poe JC, Haas KM (2005) CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol 88:1–50

    Article  CAS  PubMed  Google Scholar 

  27. Carnahan J, Stein R, Qu Z et al (2007) Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol 44:1331–1341

    Article  CAS  PubMed  Google Scholar 

  28. Steinfeld SD, Tant L, Burmester GR et al (2006) Epratuzumab (humanised anti-CD22 antibody) in primary Sjogren’s syndrome: an open-label phase I/II study. Arthritis Res Ther 8:R129

    Article  PubMed Central  PubMed  Google Scholar 

  29. Wallace DJ, Kalunian K, Petri MA et al (2014) Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann Rheum Dis 73:183–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wallace DJ, Gordon C, Strand V et al (2013) Efficacy and safety of epratuzumab in patients with moderate/severe flaring systemic lupus erythematosus: results from two randomized, double-blind, placebo-controlled, multicentre studies (ALLEVIATE) and follow-up. Rheumatology (Oxford) 52:1313–1322

    Article  CAS  Google Scholar 

  31. Avery DT, Kalled SL, Ellyard JI et al (2003) BAFF selectively enhances the survival of plasmablasts generated from human memory B cells. J Clin Invest 112:286–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Baker KP, Edwards BM, Main SH et al (2003) Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum 48:3253–3265

    Article  CAS  PubMed  Google Scholar 

  33. Navarra SV, Guzman RM, Gallacher AE et al (2011) Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377:721–731

    Article  CAS  PubMed  Google Scholar 

  34. Stohl W, Merrill JT, McKay JD et al (2013) Efficacy and safety of belimumab in patients with rheumatoid arthritis: a phase II, randomized, double-blind, placebo-controlled, dose-ranging Study. J Rheumatol 40:579–589

    Article  CAS  PubMed  Google Scholar 

  35. Vincent FB, Saulep-Easton D, Figgett WA, Fairfax KA, Mackay F (2013) The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev 24:203–215

    Article  CAS  PubMed  Google Scholar 

  36. Davidson A (2010) Targeting BAFF in autoimmunity. Curr Opin Immunol 22:732–739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Genovese MC, Lee E, Satterwhite J et al (2013) A phase 2 dose-ranging study of subcutaneous tabalumab for the treatment of patients with active rheumatoid arthritis and an inadequate response to methotrexate. Ann Rheum Dis 72:1453–1460

    Article  CAS  PubMed  Google Scholar 

  38. Stohl W (2014) Therapeutic targeting of the BAFF/APRIL axis in systemic lupus erythematosus. Expert Opin Ther Targets 18:473–489

    Article  CAS  PubMed  Google Scholar 

  39. Gensicke H, Leppert D, Yaldizli O et al (2012) Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis. CNS Drugs 26:11–37

    Article  CAS  PubMed  Google Scholar 

  40. Gatto B (2008) Atacicept, a homodimeric fusion protein for the potential treatment of diseases triggered by plasma cells. Curr Opin Investig Drugs 9:1216–1227

    CAS  PubMed  Google Scholar 

  41. Schneider P (2005) The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol 17:282–289

    Article  CAS  PubMed  Google Scholar 

  42. Dall’Era M, Chakravarty E, Wallace D et al (2007) Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum 56:4142–4150

    Article  PubMed  Google Scholar 

  43. van Vollenhoven RF, Kinnman N, Vincent E, Wax S, Bathon J (2011) Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase II, randomized, placebo-controlled trial. Arthritis Rheum 63:1782–1792

    Article  PubMed  Google Scholar 

  44. Genovese MC, Kinnman N, de La BG, Pena RC, Tak PP (2011) Atacicept in patients with rheumatoid arthritis and an inadequate response to tumor necrosis factor antagonist therapy: results of a phase II, randomized, placebo-controlled, dose-finding trial. Arthritis Rheum 63:1793–1803

    Article  CAS  PubMed  Google Scholar 

  45. Kappos L, Hartung HP, Freedman MS et al (2014) Atacicept in multiple sclerosis (ATAMS): a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Neurol 13:353–363

    Article  CAS  PubMed  Google Scholar 

  46. Fernandez L, Salinas GF, Rocha C et al (2013) The TNF family member APRIL dampens collagen-induced arthritis. Ann Rheum Dis 72:1367–1374

    Article  CAS  PubMed  Google Scholar 

  47. Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13:679–692

    Article  CAS  PubMed  Google Scholar 

  48. Hammaker D, Firestein GS (2010) “Go upstream, young man”: lessons learned from the p38 saga. Ann Rheum Dis 69(Suppl 1):i77–i82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Hommes D, van den Blink B, Plasse T et al (2002) Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn’s disease. Gastroenterology 122:7–14

    Article  CAS  PubMed  Google Scholar 

  50. Dotan I, Rachmilewitz D, Schreiber S et al (2010) A randomised placebo-controlled multicentre trial of intravenous semapimod HCl for moderate to severe Crohn’s disease. Gut 59:760–766

    Article  CAS  PubMed  Google Scholar 

  51. Salh B (2007) c-Jun N-terminal kinases as potential therapeutic targets. Expert Opin Ther Targets 11:1339–1353

    Article  CAS  PubMed  Google Scholar 

  52. Guma M, Firestein GS (2012) c-Jun N-terminal kinase in inflammation and rheumatic diseases. Open Rheumatol J 6:220–231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Han Z, Boyle DL, Chang L et al (2001) c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J Clin Invest 108:73–81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21:223–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  56. Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Tak PP, Gerlag DM, Aupperle KR et al (2001) Inhibitor of nuclear factor kappaB kinase beta is a key regulator of synovial inflammation. Arthritis Rheum 44:1897–1907

    Article  CAS  PubMed  Google Scholar 

  58. Tas SW, Vervoordeldonk MJ, Hajji N, May MJ, Ghosh S, Tak PP (2006) Local treatment with the selective IkappaB kinase beta inhibitor NEMO-binding domain peptide ameliorates synovial inflammation. Arthritis Res Ther 8:R86

    Article  PubMed Central  PubMed  Google Scholar 

  59. Kwak JH, Jung JK, Lee H (2011) Nuclear factor-kappa B inhibitors; a patent review (2006-2010). Expert Opin Ther Pat 21:1897–1910

    Article  CAS  PubMed  Google Scholar 

  60. Sehnert B, Burkhardt H, Wessels JT et al (2013) NF-kappaB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-kappaB in immune-mediated diseases. Proc Natl Acad Sci U S A 110:16556–16561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Sun SC (2012) The noncanonical NF-kappaB pathway. Immunol Rev 246:125–140

    Article  PubMed Central  PubMed  Google Scholar 

  62. Noort AR, van Zoest KP, Weijers EM et al (2014) NF-kappaB inducing kinase is a key regulator of inflammation-induced and tumor-associated angiogenesis. J Pathol 234:375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Li K, McGee LR, Fisher B et al (2013) Inhibiting NF-kappaB-inducing kinase (NIK): discovery, structure-based design, synthesis, structure-activity relationship, and co-crystal structures. Bioorg Med Chem Lett 23:1238–1244

    Article  CAS  PubMed  Google Scholar 

  64. Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3:900–911

    Article  CAS  PubMed  Google Scholar 

  65. Milici AJ, Kudlacz EM, Audoly L, Zwillich S, Changelian P (2008) Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res Ther 10:R14

    Article  PubMed Central  PubMed  Google Scholar 

  66. Changelian PS, Flanagan ME, Ball DJ et al (2003) Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302:875–878

    Article  CAS  PubMed  Google Scholar 

  67. Fleischmann R, Kremer J, Cush J et al (2012) Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N Engl J Med 367:495–507

    Article  CAS  PubMed  Google Scholar 

  68. Burmester GR, Blanco R, Charles-Schoeman C et al (2013) Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 381:451–460

    Article  CAS  PubMed  Google Scholar 

  69. Sandborn WJ, Ghosh S, Panes J et al (2012) Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N Engl J Med 367:616–624

    Article  CAS  PubMed  Google Scholar 

  70. Boy MG, Wang C, Wilkinson BE et al (2009) Double-blind, placebo-controlled, dose-escalation study to evaluate the pharmacologic effect of CP-690,550 in patients with psoriasis. J Invest Dermatol 129:2299–2302

    Article  CAS  PubMed  Google Scholar 

  71. Smolen JS, Landewe R, Breedveld FC et al (2014) EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann Rheum Dis 73:492–509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Baeten DL, Kuchroo VK (2013) How Cytokine networks fuel inflammation: interleukin-17 and a tale of two autoimmune diseases. Nat Med 19:824–825

    Article  CAS  PubMed  Google Scholar 

  73. Yeremenko N, Paramarta JE, Baeten D (2014) The interleukin-23/interleukin-17 immune axis as a promising new target in the treatment of spondyloarthritis. Curr Opin Rheumatol 26:361–370

    Article  CAS  PubMed  Google Scholar 

  74. Byrne H, Conroy PJ, Whisstock JC, O’Kennedy RJ (2013) A tale of two specificities: bispecific antibodies for therapeutic and diagnostic applications. Trends Biotechnol 31:621–632

    Article  CAS  PubMed  Google Scholar 

  75. Rossi EA, Chang CH, Goldenberg DM (2014) Anti-CD22/CD20 Bispecific antibody with enhanced trogocytosis for treatment of Lupus. PLoS One 9:e98315

    Article  PubMed Central  PubMed  Google Scholar 

  76. Grabiec AM, Reedquist KA (2013) The ascent of acetylation in the epigenetics of rheumatoid arthritis. Nat Rev Rheumatol 9:311–318

    Article  CAS  PubMed  Google Scholar 

  77. Vojinovic J, Damjanov N, D’Urzo C et al (2011) Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 63:1452–1458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SWT is supported by a VENI grant and a Clinical Fellowship from the Netherlands Organization for Scientific Research (NWO/ZonMw), and grants from the Dutch Arthritis Foundation. DLB is supported by a VICI grant from the Netherlands Organization for Scientific Research (NWO), and grants from the Dutch Arthritis Foundation.

Disclosure of conflicts of interest: The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique L. P. Baeten M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tas, S.W., Baeten, D.L.P. (2016). Recent Advances in the Treatment of Immune-Mediated Inflammatory Diseases. In: Cuturi, M., Anegon, I. (eds) Suppression and Regulation of Immune Responses. Methods in Molecular Biology, vol 1371. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3139-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3139-2_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3138-5

  • Online ISBN: 978-1-4939-3139-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics