Skip to main content

Diffusion Kurtosis Imaging

  • Chapter
Diffusion Tensor Imaging

Abstract

Diffusion kurtosis imaging (DKI) is a recent imaging method that probes the diffusion of water molecules. Whereas diffusion tensor imaging (DTI) models the diffusion as a 3D Gaussian function, DKI takes it one step further by additionally quantifying the degree of non-Gaussian diffusion. DKI diffusion parameters have been shown to yield clinically relevant information that is not captured by a more conventional DTI model. Thanks to the increase of clinical applications, DKI is becoming increasingly popular in neuroimaging. In this chapter, we will review the basics of DKI. Furthermore, we explain how DKI parameters can be estimated with the highest precision and accuracy. Finally, we discuss some applications of DKI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown R. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos Mag. 1828;4:161–1763.

    Google Scholar 

  2. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys. 1905;322(8):549–60.

    Article  Google Scholar 

  3. Le Bihan D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.

    Article  PubMed  Google Scholar 

  4. Assaf Y, et al. Non-mono-exponential attenuation of water and N-Acetyl aspartate signals due to diffusion in brain tissue. J Magn Reson. 1998;131(1):69–85.

    Article  CAS  PubMed  Google Scholar 

  5. Beaulieu C, et al. Determinants of anisotropic water diffusion in nerves. Magn Reson Med. 1994;31(4):394–400.

    Article  CAS  PubMed  Google Scholar 

  6. King MD, et al. q-space imaging of the brain. Magn Reson Med. 1994;32(6):707–13.

    Article  CAS  PubMed  Google Scholar 

  7. Niendorf T, et al. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med. 1996;36(6):847–57.

    Article  CAS  PubMed  Google Scholar 

  8. Stanisz GJ, et al. An analytical model of restricted diffusion in bovine optic nerve. Magn Reson Med. 1997;37(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  9. Stanisz GJ, et al. Diffusional anisotropy of T2 components in bovine optic nerve. Magn Reson Med. 1998;40(3):405–10.

    Article  CAS  PubMed  Google Scholar 

  10. Assaf Y, et al. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med. 2004;52(5):965–78.

    Article  PubMed  Google Scholar 

  11. Assaf Y, et al. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage. 2005;27(1):48–58.

    Article  PubMed  Google Scholar 

  12. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8(7-8):333–4.

    Article  CAS  PubMed  Google Scholar 

  13. Veraart J, et al. More accurate estimation of diffusion tensor parameters using diffusion Kurtosis imaging. Magn Reson Med. 2011;65(1):138–45.

    Article  PubMed  Google Scholar 

  14. Balanda KP, MacGillivray HL, et al. Kurtosis: a critical review. Am Stat. 1988;42(2):111–9.

    Google Scholar 

  15. Jensen JH, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53(6):1432–40.

    Article  PubMed  Google Scholar 

  16. De Santis S, et al. Using the biophysical CHARMED model to elucidate the underpinnings of contrast in diffusional kurtosis analysis of diffusion-weighted MRI. MAGMA. 2012;25(4):267–76.

    Article  PubMed  Google Scholar 

  17. Chenevert TL, et al. Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology. 1990;177(2):401–5.

    Article  CAS  PubMed  Google Scholar 

  18. Moseley ME, et al. Anisotropy in diffusion-weighted MRI. Magn Reson Med. 1991;19(2):321–6.

    Article  CAS  PubMed  Google Scholar 

  19. Basser PJ, et al. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lu H, et al. Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed. 2006;19(2):236–47.

    Article  PubMed  Google Scholar 

  21. Jensen JH, et al. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23(7):698–710.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Wu EX, et al. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed. 2010;23(7):838–48.

    Article  Google Scholar 

  23. Kiselev VG. The cumulant expansion: an overarching framework for understanding diffusion MRI. In: Jones DK, editor. Diffusion MRI: theory, methods and applications. Oxford: Oxford University Press; 2010. p. 152–68.

    Chapter  Google Scholar 

  24. Hui ES, et al. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage. 2008;42(1):122–34.

    Article  PubMed  Google Scholar 

  25. Poot DHJ, et al. Optimal experimental design for diffusion kurtosis imaging. IEEE Trans Med Imaging. 2010;29(3):819–29.

    Article  PubMed  Google Scholar 

  26. Lätt J, et al. Regional values of diffusional kurtosis estimates in the healthy brain. J Magn Reson Imaging. 2013;37(3):610–8.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Yang AW, et al. Effect of cerebral spinal fluid suppression for diffusional kurtosis imaging. J Magn Reson Imaging. 2013;37(2):365–71.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Grinberg F, et al. Diffusion kurtosis imaging and log-normal distribution function imaging enhance the visualisation of lesions in animal stroke models. NMR Biomed. 2012;25(11):1295–304.

    Article  PubMed  Google Scholar 

  29. Wang J-J, et al. Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology. 2011;261(1):210–7.

    Article  PubMed  Google Scholar 

  30. Lazar M, et al. Estimation of the orientation distribution function from diffusional kurtosis imaging. Magn Reson Med. 2008;60(4):774–81.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Jenkinson M, et al. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.

    Article  CAS  PubMed  Google Scholar 

  32. Leemans A, et al. The B-matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med. 2009;61(6):1336–49.

    Article  PubMed  Google Scholar 

  33. Horsfield M. Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. Magn Reson Imaging. 1999;17(9):1335–45.

    Article  CAS  PubMed  Google Scholar 

  34. Reese TG, et al. Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med. 2003;49(1):177–82.

    Article  CAS  PubMed  Google Scholar 

  35. Andersson J et al. 2012. A comprehensive Gaussian process framework for correcting distortions and movements in diffusion images. In Proceedings of the international society for Magnetic Resonance in Medicine, p. 2426

    Google Scholar 

  36. Ben-Amitay S, et al. Motion correction and registration of high b-value diffusion weighted images. Magn Reson Med. 2012;67(6):1694–702.

    Article  PubMed  Google Scholar 

  37. Jones DK, et al. Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 2010;23(7):803–20.

    Article  PubMed  Google Scholar 

  38. Veraart J, et al. Comprehensive framework for accurate diffusion MRI parameter estimation. Magn Reson Med. 2013;81(4):972–84.

    Article  Google Scholar 

  39. Veraart J, et al. Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model. Magn Reson Med. 2011;66(3):678–86.

    Article  PubMed  Google Scholar 

  40. Tabesh A, et al. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med. 2011;65(3):823–36.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Veraart J, et al. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. Neuroimage. 2013;81:335–46.

    Article  PubMed  Google Scholar 

  42. Salvador R, et al. Formal characterization and extension of the linearized diffusion tensor model. Hum Brain Mapp. 2005;24(2):144–55.

    Article  PubMed  Google Scholar 

  43. Koay CG, et al. A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. J Magn Reson. 2006;182(1):115–25.

    Article  CAS  PubMed  Google Scholar 

  44. Van Cauter S, et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology. 2012;263(2):492–501.

    Article  PubMed  Google Scholar 

  45. Raab P, et al. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology. 2010;254(3):876–81.

    Article  PubMed  Google Scholar 

  46. Giannelli M, et al. Diffusion kurtosis and diffusion-tensor MR imaging in Parkinson disease. Radiology. 2012;265(2):645–6. author reply 646–7.

    Article  PubMed  Google Scholar 

  47. Helpern J, et al. Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study. J Magn Reson Imaging. 2011;33(1):17–23.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Gao Y, et al. Diffusion abnormalities in temporal lobes of children with temporal lobe epilepsy: a preliminary diffusional kurtosis imaging study and comparison with diffusion tensor imaging. NMR Biomed. 2012;25(12):1369–77.

    Article  PubMed  Google Scholar 

  49. Grossman EJ, et al. Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J Neurotrauma. 2012;29(13):2318–27.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Gong N-J, et al. Correlations between microstructural alterations and severity of cognitive deficiency in Alzheimer’s disease and mild cognitive impairment: a diffusional kurtosis imaging study. Magn Reson Imaging. 2013;31(5):688–94.

    Article  PubMed  Google Scholar 

  51. Jensen JH, et al. Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction. NMR Biomed. 2011;24(5):452–7.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Hori M, et al. A new diffusion metric, diffusion kurtosis imaging, used in the serial examination of a patient with stroke. Acta Radiol Short Rep. 2012;1(12):1–3.

    Google Scholar 

  53. Hui ES, et al. Stroke assessment with diffusional kurtosis imaging. Stroke. 2012;43(11):2968–73.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Rosenkrantz AB, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants. Magn Reson Imaging. 2012;30(10):1534–40.

    Article  PubMed  Google Scholar 

  55. Rosenkrantz AB, et al. Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology. 2012;264(1):126–35.

    Article  PubMed  Google Scholar 

  56. Trampel R, et al. Diffusional kurtosis imaging in the lung using hyperpolarized 3He. Magn Reson Med. 2006;56(4):733–7.

    Article  PubMed  Google Scholar 

  57. Falangola MF, et al. Age-related non-gaussian diffusion patterns in the prefrontal brain. J Magn Reson Imaging. 2008;28(6):1345–50.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Cheung JS, et al. Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke. 2012;43(8):2252–4.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Blockx I, et al. Identification and characterization of Huntington related pathology: an in vivo DKI imaging study. Neuroimage. 2012;63(2):653–62.

    Article  PubMed  Google Scholar 

  60. Blockx I, et al. Microstructural changes observed with DKI in a transgenic Huntington rat model: evidence for abnormal neurodevelopment. Neuroimage. 2012;59(2):957–67.

    Article  PubMed  Google Scholar 

  61. Delgado y Palacios R, et al. Magnetic resonance imaging and spectroscopy reveal differential hippocampal changes in anhedonic and resilient subtypes of the chronic mild stress rat model. Biol Psychiatry. 2011;70(5):449–57.

    Article  PubMed  Google Scholar 

  62. Zhang L, et al. Current neuroimaging techniques in Alzheimer’s disease and applications in animal models. Am J Nucl Med Mol Imaging. 2012;2(3):386–404.

    PubMed Central  PubMed  Google Scholar 

  63. Zhuo J, et al. Diffusion kurtosis as an in vivo imaging marker for reactive astrogliosis in traumatic brain injury. Neuroimage. 2012;59(1):467–77.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Cheung MM, et al. Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. Neuroimage. 2009;45(2):386–92.

    Article  PubMed  Google Scholar 

  65. Fieremans E, et al. White matter characterization with diffusional kurtosis imaging. Neuroimage. 2011;58(1):177–88.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Nilsson M, et al. The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter. MAGMA. 2013;26(4):345–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Fieremans E, et al. Monte Carlo study of a two-compartment exchange model of diffusion. NMR Biomed. 2010;23(7):711–24.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelle Veraart PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Veraart, J., Sijbers, J. (2016). Diffusion Kurtosis Imaging. In: Van Hecke, W., Emsell, L., Sunaert, S. (eds) Diffusion Tensor Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3118-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3118-7_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3117-0

  • Online ISBN: 978-1-4939-3118-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics