Skip to main content

Dynamic Recording of Membrane Potential from Hippocampal Neurons by Using a FRET-Based Voltage Biosensor

  • Protocol
Receptor and Ion Channel Detection in the Brain

Part of the book series: Neuromethods ((NM,volume 110))

Abstract

Fluorescence-based biosensors for membrane voltage (mV) allow dynamic optical recording of neuronal activity. Interestingly, the development of genetically encoded voltage indicators constitute a good alternative to classical voltage-sensitive dyes, thus allowing overcoming some of the inherent problems (e.g., optical noise, etc.) associated with these organic compounds. Here, we show the use of a genetically encoded voltage-sensitive fluorescent protein (VSFP), namely the VSFP2.32, which contains a mCerulean and Citrine tandem engaging in a constitutive fluorescent resonance energy transfer (FRET) process. By expressing VSFP2.32 in hippocampal cultured neurons, we were able to monitor mV alterations in single neurons by recording VSFP2.32 conformation-mediated FRET changes in a real-time mode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mutoh H, Knöpfel T (2013) Probing neuronal activities with genetically encoded optical indicators: from a historical to a forward-looking perspective. Pflugers Arch 465:361–371. doi:10.1007/s00424-012-1202-z

    Article  CAS  PubMed  Google Scholar 

  2. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461. doi:10.1021/cr068105t

    Article  CAS  PubMed  Google Scholar 

  3. Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5:874–885. doi:10.1038/nrn1536

    Article  CAS  PubMed  Google Scholar 

  4. Knöpfel T, Díez-García J, Akemann W (2006) Optical probing of neuronal circuit dynamics: genetically encoded versus classical fluorescent sensors. Trends Neurosci 29:160–166. doi:10.1016/j.tins.2006.01.004

    Article  PubMed  Google Scholar 

  5. Day RN, Davidson MW (2009) The fluorescent protein palette: tools for cellular imaging. Chem Soc Rev 38:2887–2921. doi:10.1039/b901966a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Knöpfel T (2012) Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 13:687–700. doi:10.1038/nrn3293

    PubMed  Google Scholar 

  7. Mutoh H, Akemann W, Knöpfel T (2012) Genetically engineered fluorescent voltage reporters. ACS Chem Neurosci 3:585–592. doi:10.1021/cn300041b

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Murata Y, Iwasaki H, Sasaki M et al (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243. doi:10.1038/nature03650

    Article  CAS  PubMed  Google Scholar 

  9. Perron A, Akemann W, Mutoh H, Knöpfel T (2012) Genetically encoded probes for optical imaging of brain electrical activity. Prog Brain Res 196:63–77. doi:10.1016/B978-0-444-59426-6.00004-5

    Article  CAS  PubMed  Google Scholar 

  10. Lundby A, Mutoh H, Dimitrov D et al (2008) Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One 3:e2514. doi:10.1371/journal.pone.0002514

    Article  PubMed Central  PubMed  Google Scholar 

  11. Akemann W, Mutoh H, Perron A et al (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649. doi:10.1038/nmeth.1479

    Article  CAS  PubMed  Google Scholar 

  12. Clark JD, Gebhart GF, Gonder JC et al (1997) Special report: the 1996 guide for the care and use of laboratory animals. ILAR J 38:41–48

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministerio de Economía y Competitividad/ Instituto de Salud Carlos III (SAF2014-55700-P, PCIN-2013-019-C03-03 and PIE14/00034), Institució Catalana de Recerca i Estudis Avançats (ICREA Academia 2010), and Agentschap voor Innovatie door Wetenschap en Technologie (SBO-140028) to FC. Also, F.C., X.M. and V.F.-D. belong to the “Neuropharmacology and Pain” accredited research group (Generalitat de Catalunya, 2014 SGR 1251). We thank E. Castaño and B. Torrejón from the Scientific and Technical Services (SCT) group at the Bellvitge Campus of the University of Barcelona for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Fernández-Dueñas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fernández-Dueñas, V., Morató, X., Knöpfel, T., Ciruela, F. (2016). Dynamic Recording of Membrane Potential from Hippocampal Neurons by Using a FRET-Based Voltage Biosensor. In: Luján, R., Ciruela, F. (eds) Receptor and Ion Channel Detection in the Brain. Neuromethods, vol 110. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3064-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3064-7_27

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3063-0

  • Online ISBN: 978-1-4939-3064-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics